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Motivation

Advanced computational methods have been developed for sim
systems in disciplines such as fluid mechanics, structural dynam
nonlinear structural mechanics, shock physics, and many others
simulators can be used to generate highly accurate models of re
simulators can be an enormous aid to engineers who want to de
and/or predictive capability for the complex behaviors that are of
respective physical systems. Often, these simulators are employ
where a set of predefined system parameters, such as size or lo
material properties, are adjusted to improve or optimize the perf
system, as defined by one or more system performance objectiv
virtual prototype then requires running the simulator, evaluation 
objective(s), and adjusting the system parameters in an iterative
that an improved or optimal solution is obtained for the simulatio
performance objective(s). System performance objectives can be
to minimize weight, cost, or defects; to limit a critical temperatur
response; or to maximize performance, reliability, throughput, rec
design robustness. One of the primary motivations for the develo
been to provide engineers with a systematic and rapid means of
optimal design approximations from their simulator-based model
available to engineers generally leads to better designs and impr
at earlier stages of the design phase, and eliminates some of th
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prototypes and testing, thereby shortening the design cycle and
development costs.

In addition to improving performance objectives through optimiza
simulations can also be used as tools to quantify uncertainty and
consequence events, to investigate the sensitivity of critical respo
and to reconcile model predictions with experimental observatio
studies (as well as many others), computational simulations are 
necessary informational building blocks for answering fundament
about the predictive accuracy of computational models and the p
reliability of products and processes. By providing a flexible and e
the answering of these fundamental questions, the utility and im
methods can be greatly extended. This is what the DAKOTA act
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What is DAKOTA?

The DAKOTA (Design Analysis Kit for OpTimizAtion) provides a 
interface between your simulator and a variety of iterative metho
DAKOTA was originally conceived as an easy-to-use interface b
and numerical optimization codes, recent versions have been ex
types of iterative analysis. In addition to an abundance of optimi
strategies that it supports, the present version of DAKOTA also i
quantification with nondeterministic propagation methods, param
nonlinear least squares solution methods, and sensitivity analys
parameter study capabilities. Thus, one of the many advantages
is that access to a very broad range of iterative capabilities can 
single, relatively simple interface between DAKOTA and your sim
manages interfacing with the iterative methods and strategies, re
difficult and time consuming development burden.

Each of the numerical iterative methods supported by DAKOTA e
code at a series of different design parameter values. DAKOTA, 
iterative methods that it supports, can utilize the this series of po
simulation code to answer fundamental engineering questions, s
design?”, “how safe is it?”, or “how much confidence do I have in
addition to providing this environment for answering systems pe
DAKOTA toolkit also provides an extensible platform for the deve
methods and strategies, which can be used to increase the robus
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iterative analyses for computationally complex engineering probl
1998]).

The DAKOTA toolkit is a flexible problem-solving environment th
way of obtaining iterative solutions to user generated design pro
to try a different type of iterative method or strategy with your sim
necessary to change a relatively few commands in the DAKOTA
analysis. The flexible yet systematic approach to DAKOTA comm
to change between methods and strategies in an efficient manne
completely different style of command syntax and the need to re
each time you want to use a new optimization or other iterator m

Five architectural components define and control the flow of data
are:strategies, methods, variables, responses, andinterfaces. These
define separate areas of flexibility and extensibility.Strategiesmanage
other components and allow you to build sophisticated and adap
method combination and hybridization, management of approxim
incorporation of uncertainty into optimization processes, manage
Other novel approaches to the systems analysis process can be
envisioned and used to leverage the developments within the ot
components.Methods include the major categories optimization, u
quantification, nonlinear least squares, and parameter study, an
through the inclusion of new algorithms within a category, and th
new iterator branches that fit the general model of repeated map
responses through simulation codes.Variables currently include des
state variable specifications for continuous, discrete, and mixed 
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Responses include function values, gradients, and Hessians (an o
where these functions can be objective and constraint functions,
squares data set), or generic response functions (uncertainty and
depending on the iterator in use. Lastly,interfacesprovide access to
functions, and approximations through a variety of communicatio
DAKOTA architecture,strategies manage howmethods mapvariable
through the use ofinterfaces.
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Tutorial

Getting started

In this section you will be given instructions on how to set up and
optimization analysis. It is assumed that the DAKOTA install proc
Installation Guide, has been completed successfully, including c
NPSOL and/or DOT optimization package(s) enabled. Once DA
successfully installed you are ready to proceed with the tutorial. 
will show you how to set up and run a DAKOTA analysis in paral
you intend to run this example you will need to configure DAKOT
described inConfiguring with the Message Passing Interface.

The getting started tutorial will proceed by having you set up and
optimization problem in DAKOTA. In this tutorial you will learn ho

• Construct a simple interface between an evaluation code and 

• set up a DAKOTA input file including strategy, interface, variab
method specifications

• initiate a DAKOTA run

• interpret a DAKOTA output file

Working through the example should give you a good understand
of DAKOTA. Additional examples, which will allow you to further y
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DAKOTA, appear in the sections titledTextbook Example, Rosenbro
Cylinder Head Example, Engineering Applications, andSome use
DAKOTA , as well as throughout the text.

A basic optimization problem

As a means of familiarizing new users to the DAKOTA software a
demonstrating some of the capabilities of DAKOTA, a simple exa
problem will be worked. For this example, suppose that a high-v
light weight steel containers wants to minimize the amount of raw
be used to manufacture a 1.1 quart cylindrical-shaped can, inclu
Material for the container walls and end caps is stamped from st
constant thickness. The seal between the end caps and containe
press forming operation on the end caps. The end caps can the
container wall forming a seal through a crimping operation.

Figure 1 Container wall-to-end-cap seal.

For preliminary design purposes, the extra material that would n
container end cap seals is approximated by increasing the cut d

wall

end cap
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diameters by 12% and the height of the container wall by 5%, an
stamping the end caps in a specialized pattern from sheet stock
cap area. The equation for the area of the container materials in

or

whereD andH are the diameter and height of the finished produc
respectively. The volume of the finished product is given by

The equation for area is the objective function for this problem; it
equation for volume is an equality constraint; it must be satisfied
optimization problem. Any combination ofD anH that satisfy the vo
produce afeasible solution (although not necessarily the optimal s
minimization problem, and any combination that do not satisfy th
generate aninfeasible solution. Thus, in this optimization problem
function is to be minimized with respect to parametersD andH, subje
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the volume constraint. The area that is a minimum subject to the
optimal area, and the corresponding values for the parametersD andH
parameter values. The optimization problem can be stated in a m
standardized form as

It is important that the equations supplied to a numerical optimiz
generating only physically realizable parameters as optimizers. 
engineer to supply these limits, usually in the form of parameter
General purpose numerical optimizers do not typically have the 
between physically meaningful and unmeaningful parameter val
observing the equations for the area objective function and the vo
seen that by allowing the diameter,D, to become negative, it is alge
generate relatively small values for the area that also satisfy the
Negative values forD are of course physically meaningless. There
numerically-solved optimization problem remains meaningful, a 

 must be included in the optimization problem statement. A
implied since the volume constraint could never be satisfied ifH were 

a bound constraint of  can be added to the optimization pro

        min 2 1.15( ) 1.12( )πD
2

4
------ 1.05( )πDH+

subject  to: πD
2
H

4
---------- 1.1qt( )– 57.75in

3
qt⁄( ) 0=

D 0≥

H 0≥
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A graphical view of the container optimization problem appears 
surface defines the area,A, as a function of diameter and height. T
extends across the surface defines the areas that satisfy the vol
Graphically, the container optimization problem can be viewed as
along the constraint line with the smallest 3-D surface height in F
corresponds to the optimal or minimizing values for diameter an
product.
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Figure 2 A graphical representation of the container optimization problem

The numerical optimizers that are presently supported by DAKOT
constraints, in a less-than-or-equal-to format, and not equality co
volume constraint in this example. However, it is possible to repr

constraint, such as , with two inequality constraints,

since the only time both inequalities are satisfied is when
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requirements on the constraint functions and variable bounds, th
can restated as

This statement of the optimization problem will be incorporated i
following sections. The termsimulator is defined within DAKOTA in
simulator is any computer code that can accept variables as inpu
responses in the form of function values and possibly gradient a
derivative (Hessian) information. In terms of the DAKOTA iterato
example,DandHarevariables,and the area objective function, and
functions are contained within the simulator, and are to be used 
Bound constraints are handled internally by optimizers and do no
a users interface. The mechanisms for receiving the variables fr
simulator, computing the responses, and passing the responses
DAKOTA comprise theinterface. What remains to be done before
to solve this optimization problem is the construction of this interfa

        min 2 1.15( ) 1.12( )πD
2

4
------ 1.05( )2πDH+

subject  to: πD
2
H

4
---------- 1.1qt( )– 57.75in

3
qt⁄( ) 0≤

π–
D

2
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4
---------- 1.1qt( ) 57.75in

3
qt⁄( ) 0≤+

D 0 H 0≥,≥
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or moremethodsandstrategiesfrom the DAKOTA library. These tas
the following sections.

Constructing the interface

An interface in the DAKOTA environment is a user routine that is
mapping variables into responses. While a practical implementa
include calls to a finite element or finite difference simulation cod
interface will be constructed in this section that will be used to com
objective function and the volume constraint functions from alge
values ofD andH as input variables. Code for reading the input va
output responses is also part of the interface.

DAKOTA offers more than one option for initiating execution of th
performing the input of variables and output of responses. For th
introductory example theThe System Call Application Interface app
to initiate execution of the interface. Another interface possibility
titled The Direct Function Application Interface. For the system c
interface exists as one or more stand-alone executable program
interface reads one set of variables, executes the simulator, whic
calculations, and outputs one set of responses. For this example1-p
be used. For this example the interface will house the input, com
parts of the interface in a single executable. The3-piece Interface is a
can be used to obtain a preprocessor-simulator-postprocessor in
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listings of the interface for the container optimization problem ar
through Figure 5 for Fortran, C, and C++ languages, respectivel

Figure 3 Fortran listing of the interface for the container example.
c*****************************************************************
c*****************************************************************
      program container
c*****************************************************************
c*****************************************************************
      integer num_fns,num_vars,req(1:3)
      double precision fval(1:3),D,H
      character*80 infile,outfile,instr
      character*25 valtag(1:3)
      double precision PI /3.14159265358979/

c     get the input and output file names from the command line
c     using the fortran 77 library routine getarg
      call getarg(1,infile)
      call getarg(2,outfile)

c*************************************
c     read the input data from DAKOTA
c*************************************
      open(11,FILE=infile,STATUS=’OLD’)

c     get the number of variables and function evaluation requests
      read(11,*)num_vars,instr,num_fns,instr

c     get the values of the variables and the associated tag names
      read(11,*)H,instr
      read(11,*)D,instr

c     get the evaluation type request for the associated function number
      do 10 i=1,num_fns
        read(11,*)req(i),instr
 10   continue

      close(11)

c**********************************************************
c     compute the objective function and constraint values
c**********************************************************
      if(req(1).eq.1) fval(1)=0.644*PI*D**2+1.05*PI*D*H
      if(req(2).eq.1) fval(2)=0.25*PI*H*D**2-63.525
      if(req(3).eq.1) fval(3)=-0.25*PI*H*D**2+63.525
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c******************************************
c     write the response output for DAKOTA
c******************************************
      valtag(1)=’area’
      valtag(2)=’volume_constraint_1’
      valtag(3)=’volume_constraint_2’

      open(11,FILE=outfile,STATUS=’UNKNOWN’)

      do 20 i=1,num_fns
        if(req(i).eq.1) then
          write(11,’(E22.15,1X,A)’),fval(i),valtag(i)
        endif
 20   continue

      close(11)

      end

The one-piece approach assumes that all file I/O pre and post-p
one callable program or driver routine. File names are supplied o
the interface, e.g. an internal system call by DAKOTA to the one
something like:

system("container variables.in responses.out");

wherecontainer  is the simulator executable for this example, 
and responses output file names follow on the same line. File na
by the interface using a command line argument procedure (libra
Fortran or the arrayargv in C or C++). While not strictly needed wh
changing, command line retrieval of the file names is required w
assignment (e.g. file tagging) is used.

Figure 4 C language listing of the container simulator example.
#include <stdio.h>
#include <stdlib.h>
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/**********************************************************************/
/* container.c - container optimization example                       */
/**********************************************************************/
void main(int argc, char **argv)
{
FILE *fileptr;
double fval[3],D,H;
int i,num_vars,num_fns,req[3];
char *infile,*outfile,in_str[81];
char *valtag[]={"area\n",
                "volume_constraint_1\n",
                "volume_constraint_2\n"};
const double PI = 3.14159265358979;

/* assign the input and output file names from the command line */
infile = argv[1];
outfile = argv[2];

/******************************/
/* read the input from DAKOTA */
/******************************/
fileptr = fopen(infile,"r");

/* get the number of variables and functions*/
fscanf(fileptr,"%d %80s %d %80s",&num_vars,in_str,&num_fns,in_str);

/* get the values of the variables and the associated tag names */
fscanf(fileptr,"%lf %80s",&H,in_str);
fscanf(fileptr,"%lf %80s",&D,in_str);

/* get the evaluation type request */
for(i=0; i<num_fns; i++)
  fscanf(fileptr,"%d %80s",&req[i],in_str);

fclose(fileptr);

/********************************************************/
/* compute the objective function and constraint values */
/********************************************************/
 if(req[0]==1)
    fval[0]=0.644*PI*D*D+1.04*PI*D*H;
 if(req[1]==1)
    fval[1]=0.25*PI*H*D*D-63.525;
 if(req[2]==1)
    fval[2]=-0.25*PI*H*D*D+63.525;

/****************************************/
/* write the response output for DAKOTA */
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/****************************************/
fileptr = fopen(outfile,"w");

for(i=0; i<num_fns; i++)
  if(req[i]!=0)
    fprintf(fileptr,"%23.15e %s",fval[i],valtag[i]);

fclose(fileptr);

}

For the one-piece interface, the i/o routines associated with the 
read and write files in one of the allowable DAKOTA formats. Fo
example the input file generated by DAKOTA for the simulator w
format:

2 variables 3 functions
<double> D
<double> H
1 ASV_1
1 ASV_2
1 ASV_3

The simulator must be able to read this file to compute the objec
function values. The first line of the file indicates that there are tw
optimization problem:DandH, and three functions: (1) the area obj
and (3) the volume constraint functions. Bound constraints do no
the simulator. The second and third lines are used to transmit val
H from DAKOTA to the simulator. The<double>  descriptors repre
andH that would appear in an actual simulator input file. The las
requests for the type of computation that is to be associated with
functions. The value of1 in first character position of the last three
function value is being requested for each of the three functions
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used to make requests for gradient or Hessian information, or so
function, gradient, and Hessian information, see the section titleDAK
Formats and specifically the subsectionActive set vector control for 
However, for this example, only function values will be requested
gradient information needed by the numerical optimizer will be c
DAKOTA through finite differencing. The strings beginning with A
lines of the file are the default tag names for each function. Funct
in the on the end positions of the last three lines correspond to t
fval(1)  throughfval(3)  in the Fortran listing for the containe
functions labeledfval[0] throughfval[2] in the C and C++ list
is also possible to assign tag names to these requests.

Figure 5 C++ listing of the container optimization example
#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>

//**********************************************************************
// container.C - C++ container optimization example
//**********************************************************************

int main(int argc, char** argv)
{

  //******************************
  // read the input from DAKOTA
  //******************************
  fstream fin(argv[1],ios::in);

  // get the number of variables and functions
  int num_vars, num_fns;
  char in_str[81];
  fin >> num_vars >> in_str >> num_fns >> in_str;

  // get the values of the variables and the associated tag names
  double D,H;
  fin >> H >> in_str;
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  fin >> D >> in_str;

  // get the evaluation type request
  int* req = new int [num_fns];
  int i;
  for(i=0; i<num_fns; i++) {
    fin >> req[i];
    fin.ignore(256, ’\n’);
  }

  fin.close();

  //********************************************************
  // compute the objective function and constraint values
  //********************************************************
  double *fval = new double [num_fns];
  const double PI = 3.14159265358979;
  if(req[0]==1)
    fval[0]=0.644*PI*D*D+1.04*PI*D*H;
  if(req[1]==1)
    fval[1]=0.25*PI*H*D*D-63.525;
  if(req[2]==1)
    fval[2]=-0.25*PI*H*D*D+63.525;

  //****************************************
  // write the response output for DAKOTA
  //****************************************
  fstream fout(argv[2],ios::out);
  fout.precision(15);
  fout.setf(ios::scientific);
  fout.setf(ios::right);
  char *val_tag[]= {"area\n",
                "volume_constraint_1\n",
                "volume_constraint_2\n"};

  for(i=0; i<num_fns; i++)
    if(req[i]=1)
      fout << setw(23) << fval[i] << " " << val_tag[i];

  fout.close();

  return 0;
}
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In this examplenum_fns  represents the total number of objective
function evaluations in the model. For the container optimization
area objective function and two volume inequality constraint func
function evaluation are stored in variablereq(i);  the objective fun
stored inreq(1) and the volume constraint requests are stored inreq(
respectively, for the Fortran listing. A value of1 for req(i)  indicate
associated function evaluation, while a value of0 indicates do not co
function value is stored infval(1)  and the volume constraint valu
fval(2) andfval(3) , respectively. For this example the evalu
req(i) ) will consist strictly of requests or nonrequests for functio
or Hessian information needed by the numerical optimizer is com
DAKOTA through finite differencing and additional calls to the sim
relieving you of this burden. However, if the interface has the cap
gradient and/or Hessian information internally, DAKOTA also has
requests for this information if it is needed by the numerical optim
could contain branching and looping structures to handle specific
Hessian information. However, the limited complexity of these ve
are suitable for this simple example.

The simulator-to-DAKOTA response output has the following form
optimization problem:

<double> area
<double> volume_constraint_pos
<double> volume_constraint_neg

This file contains one line for each of the function values that wa
simulator input file. The <double> descriptors represent real valu
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function tag (area, for example). The function tags are optional. T
by DAKOTA, and the order of the numeric data is assumed to be
of requests in the input file. Function tags do however increase the
files. The only requirements for function tags is that they be sep
data by a blank space or new line character, that they contain at le
a-z), and that they contain no blank spaces. Output of gradient an
also possible. SeeResults file format for more information.

Creating a DAKOTA input file

A DAKOTA input file is a collection of character and numeric info
the problem to be solved. For this example, the file will be name
dakota_container.in . The input file contains fields describin
method, variables, responses, and interface components of DAK
solve the problem. The contents of the DAKOTA input file must n
problem as defined in the simulator. A DAKOTA input file for the 
problem is given in Figure 6. Any line beginning with a ‘#’ charac
comment. Presence of the backslash (\) character is required in th
continuation of a major specification (interface , variables , stra
or response ) onto the next line of the file. The last line of each 
terminated with a ’\’ character since it marks the specification’s e

Figure 6 DAKOTA input file for the container optimization example.
# Interface specification

interface,
  application, system
  analysis_driver = ’container’

# Variables specification
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variables,
  continuous_design = 2
  cdv_descriptor ’H’ ’D’
  cdv_initial_point 4.5 4.5
  cdv_lower_bounds 0.0 0.0

# Strategy specification
strategy,
  single_method

# Method specification
method,
  npsol_sqp

# Responses speification
responses,
  num_objective_functions = 1
  num_nonlinear_constraints = 2
  numerical_gradients
  method_source dakota
  interval_type central
  fd_step_size = 0.001
  no_hessians

In the first four lines ofdakota_container.in  the interface spe
The system call application interface is specified with the comm

application, system

andcontainer , the name of the executable simulator file, is sp
driver on the following line.

Next, the strategy and method specifications are made. For this 
single_method  strategy is specified, which means that only o
used to perform the analysis. The numerical optimizer that will be
thenpsol_sqp  optimizer. This optimizer is selected in the meth
NPSOL library provides an implementation of the SQP or seque
programming method for nonlinearly constrained local optimizati
assumed that the objective and constraint functions have continu
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partial derivatives. It is also implied that the problem possesses 
value. However, this method can be applied to problems with mo
optimum, if the locally optimal value is considered to be of use ev
the global optimum.

Following specification of the method, the variables specification
example, the number of design variables is equal to2 and this count 
command

continuous_design = 2

wherecontinuous_design  variables have been specified sinc
the bounds is a possible solution. Next the name tags for the opti
H) are set with the command

cdv_descriptor ’H’ ’D’

wherecdv_descriptor  stands for continuous design variable 
followed by thecdv_initial_point  to be used at the start of t
analysis, and then the values of the variable bounds. Since only
specified, the problem is unbounded above.

After declaring the variables their associated specifications are, t
is made in filedakota_container.in . First, the number of obje
to 1 (for the area objective function) and the number of nonlinear
constraints in this example) is set to2. The following four lines in th
specification state that central finite difference gradients are to b
optimizer, and that these gradients are to be computed by DAKO
0.001 . These specifications are necessary since they control wh
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expects in the simulator input and response output files, respect
computations are to be performed on the simulator response ou
gradient approximation. The commandno_hessians  is specified s
will not return the Hessian information, rather thenpsol_sqp  nume
generates its own internal gradient-based Hessian approximatio

Thenpsol_sqp optimizer was selected because it has the capab
objective and constraint functions. Thedot_mmfd , dot_slp , anddo
also possess these capabilities. DAKOTA can be used to easily 
numerical optimizers. For the DOT optimizer methods this can b
replacing the method specificationnpsol_sqp in the DAKOTA inpu
three appropriate DOT methods. SeeNPSOL Method andDOT Meth
information.

Running DAKOTA

Once the interface has been constructed, the process of executi
example problem is relatively simple. One possible way to execut
dakota_container.in  and the interface executable,container
with a path to the DAKOTA executable. The directory $DAKOTA/
directory. It is also possible to create a link to the dakota executa
command in some other directory. If the container simulator exe
created it will be necessary to do so with a command such as

f77 -o container container.f

for Fortran, or
cc -o container container.c
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for C, or

CC -o container container.C

for C++. The actual compile commands may vary from system to
important is that an executable, of one of the preceding example s
container exists in the working directory for this example. Once
an appropriate directory DAKOTA is executed from the UNIX pro
example with the command:

dakota -i dakota_container.in

DAKOTA should take a few seconds to load and execute. Outpu
standard output device. The DAKOTA output can also be redirec
syntax

dakota -i dakota_container.in > dakota.out

wheredakota.out  can be replaced by any desired file name. O
in the following section. SeeRunning DAKOTA  for a more detailed

Interpreting the results

Figure 7 shows a partial listing of the output for the container op
first several lines, down to the line that reads "Running Single Metho
Strategy... ", reflect information that was specified in the DAK
during DAKOTA installation. The lines that follow, down to the lin
"NPSOL exits with INFORM code = 0 ", contain informatio
and gradient evaluations that have been requested by NPSOL. S
evaluations and gradient-related function evaluations have been
for brevity.
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The values of the optimization variables and the initial objective 
evaluations are listed following the line that reads "Begin Function Ev
1". The values of the optimization variables are labeled with the D
respectively, the value of objective function is labeled with the taobj_
values of the volume constraint are labeled with the tagsnln_con1  a
respectively. Note that one of the constraint function values is in
because the initial design parameters were not feasible. Howeve
has the capability to find a design that is both feasible and optim

Between the optimization variables and the function values the c
to the simulator is displayed as " (container /var/tmp/aaaa0041c /var/tmp/

baaa0041c) " , with container  being the name of the simulator a
aaaa0041c  and/var/tmp/baaa0041c  being the path and names belo
DAKOTA-to-simulator input and simulator-to-DAKOTA output file
Temporary files have been used in this case and these are delete
to-DAKOTA output file is read. However, it is also possible to spe
to be saved under user supplied names with DAKOTA generated
saving andFile tagging for more information.

Just preceding the output of the objective and constraint function
"Active set vecto r = { 1 1 1 } ". Theactive set vectoris
with the active constraint set that is sometimes defined for nume
algorithms. For this case the active set vector is used for a DAKO
and indicates the type of request that has been made to the simu
constraint function evaluations. The first value of1 on this DAKOTA o
that the simulator is to evaluate the objective function. The remai
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that the simulator is to evaluate the volume constraint functions.
appeared in any of these positions it would have been interpreted
not-evaluate request for the respective objective or constraint fun
contained in this active set vector correspond to the numbers in t
of the last three lines of the DAKOTA-to-simulator input file descri
Constructing the interface.

Since finite difference gradient computations have been specifie
their values, in part by automatically making additional function ev
simulator. Examples of the gradient-related function evaluations h
sample output, beginning with the line that reads ">>>>> Dakota fini
difference evaluation for x[1] + h: ". A sample of th
and constraint function values and their gradients is shown follow
5 beginning with the line ">>>>> Total response returned to
iterator: ". Here, another type of active set vector is displayed
file. The line "Active set vector = { 3 3 3 } " displays a
numerical-optimizer active set vector. It indicates the values that D
the numerical optimizer associated with the objective function an
of 3 are composite combinations used to indicate that the results
1, and a DAKOTA gradient computation,2, are being supplied to the
for each of the objective and constraint functions. The composite
simple addition (1+2=3 ). Some numerical optimizers also reques
For this case a code of4 is used. Thus, if the numerical optimizer w
with function value and Hessian information the active set value 
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function value, gradient and Hessian information were being sup
would be1+2+3=7,  for the associated objective or constraint fun

The final lines of the DAKOTA output, beginning with the line "<<<<
method iteration completed ", summarize the results of th
analysis. The best values of the optimization parameters, objectiv
equations are output. Since the analysis is approximate the con
satisfied to within some small tolerance of zero for this example. T
followed by a summary of the NPSOL analysis. A more detailed s
analysis is contained in either filefort.9  or file ftn09 , as specifie

Figure 7 Example DAKOTA output
MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = npsol_sqp
gradientType = numerical
hessianType = none
Numerical gradients using 0.1% central differences
to be calculated by the dakota finite difference routine.
Optimality Tolerance        = 0.0001
NOTE: NPSOL’s convergence tolerance is not a relative tolerance.
      See pp. 21-22 of NPSOL manual for description.
Derivative Level            = 3
Running MPI executable in serial mode.
Running Single Method Strategy...

--------------------------------------
Begin Dakota finite difference routine
--------------------------------------

>>>>> Initial map for non-finite-differenced portion of response:

------------------------------
Begin Function Evaluation    1
------------------------------
Parameters for function evaluation 1:
                      4.5000000000e+00 H
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                      4.5000000000e+00 D

(container /var/tmp/aaaa0041c /var/tmp/baaa0041c)
Removing /var/tmp/aaaa0041c and /var/tmp/baaa0041c

Active response data for function evaluation 1:
Active set vector = { 1 1 1 }
                      1.0776762359e+02 obj_fn
                      8.0444076396e+00 nln_con1
                     -8.0444076396e+00 nln_con2

>>>>> Dakota finite difference evaluation for x[1] + h:

------------------------------
Begin Function Evaluation    2
------------------------------
Parameters for function evaluation 2:
                      4.5045000000e+00 H
                      4.5000000000e+00 D

(container /var/tmp/caaa0041c /var/tmp/daaa0041c)
Removing /var/tmp/caaa0041c and /var/tmp/daaa0041c

Active response data for function evaluation 2:
Active set vector = { 1 1 1 }
                      1.0783442171e+02 obj_fn
                      8.1159770472e+00 nln_con1
                     -8.1159770472e+00 nln_con2

>>>>> Dakota finite difference evaluation for x[1] - h:

------------------------------
Begin Function Evaluation    3
------------------------------
Parameters for function evaluation 3:
                      4.4955000000e+00 H
                      4.5000000000e+00 D

(container /var/tmp/eaaa0041c /var/tmp/faaa0041c)
Removing /var/tmp/eaaa0041c and /var/tmp/faaa0041c

Active response data for function evaluation 3:
Active set vector = { 1 1 1 }
                      1.0770082548e+02 obj_fn
                      7.9728382320e+00 nln_con1
                     -7.9728382320e+00 nln_con2
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>>>>> Dakota finite difference evaluation for x[2] + h:

------------------------------
Begin Function Evaluation    4
------------------------------
Parameters for function evaluation 4:
                      4.5000000000e+00 H
                      4.5045000000e+00 D

(container /var/tmp/gaaa0041c /var/tmp/haaa0041c)
Removing /var/tmp/gaaa0041c and /var/tmp/haaa0041c

Active response data for function evaluation 4:
Active set vector = { 1 1 1 }
                      1.0791640170e+02 obj_fn
                      8.1876180243e+00 nln_con1
                     -8.1876180243e+00 nln_con2

>>>>> Dakota finite difference evaluation for x[2] - h:

------------------------------
Begin Function Evaluation    5
------------------------------
Parameters for function evaluation 5:
                      4.5000000000e+00 H
                      4.4955000000e+00 D

(container /var/tmp/iaaa0041c /var/tmp/jaaa0041c)
Removing /var/tmp/iaaa0041c and /var/tmp/jaaa0041c

Active response data for function evaluation 5:
Active set vector = { 1 1 1 }
                      1.0761892743e+02 obj_fn
                      7.9013403937e+00 nln_con1
                     -7.9013403937e+00 nln_con2

>>>>> Total response returned to iterator:

Active set vector = { 3 3 3 }
                      1.0776762359e+02 obj_fn
                      8.0444076396e+00 nln_con1
                     -8.0444076396e+00 nln_con2
 [  1.4844025288e+01  3.3052696308e+01  ] obj_fn gradient
 [  1.5904312809e+01  3.1808625618e+01  ] nln_con1 gradient
 [ -1.5904312809e+01 -3.1808625618e+01  ] nln_con2 gradient
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>>>>> Dakota finite difference evaluation for x[2] - h:

------------------------------
Begin Function Evaluation   40
------------------------------
Parameters for function evaluation 40:
                      4.9556729812e+00 H
                      4.0359108491e+00 D

(container /var/tmp/adaa0041c /var/tmp/bdaa0041c)
Removing /var/tmp/adaa0041c and /var/tmp/bdaa0041c

Active response data for function evaluation 40:
Active set vector = { 1 1 1 }
                      9.8930418512e+01 obj_fn
                     -1.2698647482e-01 nln_con1
                      1.2698647482e-01 nln_con2

>>>>> Total response returned to iterator:

Active set vector = { 3 3 3 }
                      9.9062468783e+01 obj_fn
                      1.8074075570e-10 nln_con1
                     -1.8074075570e-10 nln_con2
 [  1.3326473792e+01  3.2694282247e+01  ] obj_fn gradient
 [  1.2818642490e+01  3.1448402789e+01  ] nln_con1 gradient
 [ -1.2818642490e+01 -3.1448402789e+01  ] nln_con2 gradient

NPSOL exits with INFORM code = 0 (see p. 8 of NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
      for complete NPSOL iteration history.

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 40 total (40 new, 0 duplicate)
<<<<< Best design parameters  =
                      4.9556729812e+00 H
                      4.0399507999e+00 D
<<<<< Best objective function =
                      9.9062468783e+01
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<<<<< Best constraint values  =
                      1.8074075570e-10
                     -1.8074075570e-10
Run time from MPI_Init to MPI_Finalize is 6.0880220000e+00 seconds

                     NPSOL  ---  Version 4.06-2     Nov  1992
                     ========================================

Maj  Mnr    Step  Fun  Merit function  Violtn Norm gZ   nZ Penalty Conv
    0    3 0.0E+00    1  1.07767624E+02 1.1E+01 1.5E+00    1 0.0E+00 F FF
    1    1 1.0E+00    2  9.95643509E+01 4.2E+00 1.3E+00    1 0.0E+00 F FF
    2    1 1.0E+00    3  9.91019314E+01 6.5E-01 3.8E-01    1 0.0E+00 F TF
    3    1 1.0E+00    4  9.90642035E+01 1.3E-01 9.4E-02    1 0.0E+00 F TF
    4    1 1.0E+00    5  9.90624728E+01 5.2E-03 3.6E-03    1 0.0E+00 T TF
    5    1 1.0E+00    6  9.90624688E+01 6.4E-06 1.8E-04    1 0.0E+00 T TF
    6    1 1.0E+00    7  9.90624688E+01 1.9E-08 4.1E-06    1 0.0E+00 T TF
    7    0 1.0E+00    8  9.90624688E+01 2.6E-10 5.2E-12    1 0.0E+00 T TT

 Exit NPSOL - Optimal solution found.

 Final nonlinear objective value =    99.06247

Some useful features of DAKOTA

DAKOTA has many features that can be used to enhance your pr
including ones that can be used to reduce the overall amount of
running an analysis. Some of these features are implicit to the D
this file allows you to readily change between analysis types, ve
problems, etc. Other useful time-saving features are also presen
section examples of the restart capability and the parallel proces
discussed.
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Restarting DAKOTA

DAKOTA was developed for solving problems that typically requ
computationally expensive simulation codes. In some cases you
same optimization, but to a finer final convergence tolerance. Th
entire optimization analysis had to be repeated. Power outages 
also result in costly delays. However, DAKOTA automatically reco
and response data from calls to your simulation code so that a t
possible.

As an example of the DAKOTA restart capability, consider the ab
again. For the sake of this example, pretend that the simulator fu
expensive and that the DAKOTA run unexpectedly aborted after 
Assuming that the original DAKOTA analysis was started with th

dakota -i dakota_container.in

DAKOTA will automatically generate a file nameddakota.rst tha
response information from the aborted run. To instruct DAKOTA 
where it left off" execute the command

dakota -i dakota_container.in -r -s 20 -w dakota_new.rst

This command tells DAKOTA to recover the results of the first tw
from the restart file and then proceed with the analysis by making
writing the new restart filedakota_new.rst . A more in depth dis
capability with additional features is given inRestart Management.
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The parallel interface

If you have more than one processor available, such as a cluste
workstations or a multi-processor, then the solution time required
can often be substantially reduced through use of parallel distrib
techniques. For many of the optimization and other methods sup
parallel processing can dramatically reduce analysis times when
evaluations are computationally expensive. The reason behind t
methods contain at least some independent calls to the simulato
between processors on every iteration step. If a given method han ind
calls at every iteration step then the DAKOTA analysis speed can
as a factor ofn by running multiple instances of the simulator, one
maximum speed increase, it has been assumed that at leastn processo
DAKOTA for simulator evaluations and that the computation time
simulator call is suitably high (typically on the order of a few sec
workstation clusters) so that interprocessor communication time
comparison. Performance increases can still be obtained for sys
processors.

DAKOTA has been developed with parallel processing capabilitie
framework. Thus, if you have a new or existing application that co
parallel simulator calls, DAKOTA allows you to exploit parallelism
only a few commands to the dakota input file and some minor ch
line. DAKOTA can also be used in conjunction with simulators th
parallel capabilities. For a complete description of the parallel cap
DAKOTA seeExploiting Parallelism.
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This section will explain where parallelism is exploited in typical o
and show how to set up and run a simple DAKOTA optimization 
processing techniques. It is assumed that DAKOTA has been co
package as described inConfiguring with the Message Passing Int
previously defined container optimization example will be extend
processing of the finite difference gradient computations. For fur
incorporating parallelism into a DAKOTA analysis seeSpecifying Pa

Gradient based local optimization algorithms typically consist of 
followed by an iterative phase, where each iteration consists of: 
search direction in the multi-dimensional parameter space, a se
direction for a sufficient decrease in the objective function (subje
may be present), a gradient computation, an update to a matrix 
partial derivatives (Hessian) of the constrained objective, and a c
are many opportunities to exploit parallelism in this type of algor
these opportunities would turn out to be productive in light of the
calls usually dominate the overall computational effort.

The search direction computation is based on the Hessian appro
from the previous iteration or from the initialization phase. The o
function values, gradients, and the Hessian approximation are u
direction. This direction points to the minimum value of the curre
optimization problem that satisfies the constraints. This subprob
approximation to the actual nonlinear optimization problem, and
optimization algorithm must proceed iterative manner to a solutio
computation is based on linear algebra and the computational e
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very small in comparison to the simulator calls. This conclusion 
parts of the optimization algorithm algebra, such as the update t
approximation. The use of parallel processing to solve the optim
typically advantageous unless the number of optimization param
simulator function evaluations are relatively inexpensive. The dev
parallelism is also strongly tied to the internal data structures of 
reasons, this form of parallelism is not directly supported by DAK
possible to link an optimizer with these capabilities to DAKOTA s

The part of the problem where it is advantageous to utilize paral
multiple calls to the simulator evaluator can be made in parallel.
optimization, this opportunity occurs during the line search and g
steps. During these steps both function and gradient information
objective functions are computed. For some types of line search,
directly after the completion of the line search. For other cases i
line search. For either type of line search, the gradient informatio
additional processors at the same time as the objective and con
computed. For the container optimization example if central finite
the gradient computations, then an additional four gradient-relat
can be performed on four additional processors. For expensive s
would result in a maximum speed increase of a factor of five.

Enabling parallel optimization capabilities in DAKOTA is quite ea
optimization problem will be used as an example. While the con
calls are quite inexpensive in actuality, it is used here for the sake
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set up for a simulator with expensive function evaluations would
lines and the output obtained would be much the same.

No changes are necessary between the DAKOTA to interface in
parallel analyses. Some minor changes may be necessary for th
output code for the parallel analysis. The reason for this is that t
DAKOTA operating in parallel mode polls for the existence of the
output file and once its existence is detected a read attempt is m
that the interface is not finished writing this file and therefore the
This condition can occur, for example, when there is a large amo
computationally expensive interface alternates between calculati
or when there are write delays due to heavy system loading. DA
to recover from up to ten failed read attempts of this type on any
input file, but the potential for this condition can often be avoided
some simple changes to the simulator output procedures. The a
write the simulator to DAKOTA output to a uniquely named temp
the output has been written and this file has been closed, move 
name stored inoutfile . Other possibilities exist, and are discus
synchronization.

The temporary file name can be generated in a variety of ways. 
taken so that each simulator that is in operation uses a different 
example, that would require having five different file names on e
approach to generating unique file names would be to add one o
name stored inoutfile . However, although such an occurrence w
is no guarantee that this would produce file names that are not a
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else. Another approach would be to obtain a unique file name usi
or from the C-library functiontmpnam in C or C++.

For the Fortran version theopen  statement the listing in Figure 3 is

      open(11,STATUS=’SCRATCH’)
      inquire(11,NAME=tmpfile)

where tmpfile  is a character variable of the appropriate dimen
data to this file and replace theclose  statement inFigure 3 with

      close(unit=11,STATUS=’KEEP’)

Thetmpfile  is moved tooutfile  with the statements

      sysvar = "mv " // tmpfile // " " // outfile
      call system(sysvar)$DAKOTA/test/container_p.f

The code for the parallel version is located in filecontainer_p.f  i
test/ directory. This version is not compatible with silicon graph
not allow closing a scratch file withSTATUS=’KEEP’ . For this case
language version that callstmpnam is located in filescontainer_p2.f
tempnm.c. To compile the Fortran versioncontainer_p.f  you
something like

f77 -o container_p container_p.f

or for the mixed language version
cc -c tempnm.c
f77 -o container_p container_p2.f tempnm.o
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For the C and C++ versions a temporary file name is obtained w

tmpnam(tmpfile);

The filetmpfile  is opened, response data is written, and it is cl
standard C or C++ conventions. The file is then moved tooutfile  u
function call. The C and C++ versions are stored in filescontainer_p.
container_p.C  in the$DAKOTA/test/  directory, respectively
commands similar to those given for the serial C and C++ versio

These files are the same as the serial versions, with exception to
the event that the simulator code is not directly accessible, the3-piece
used to incorporate the above file renaming strategy. It should b
execute as fast as the container example, it is unlikely that a fail
condition would occur in actuality. However, in any problem wher
occur between the creation of the interface-to-DAKOTA respons
such a strategy is necessary. Also, if the simulator is compiled fo
environment then thesystem  call in the Fortran version and the C
not be suitable on some platforms unless re-entrant versions are
some other method should be used to avoid the race condition o
could be used. For other approaches to avoiding the race condit
System call synchronization.

If the parallel container optimization example is to be run on a cl
connected workstations in master-slave mode under MPI, then o
necessary to the DAKOTA input filedakota_container.in  in F
of the analysis driver in the interface specification must be set toconta
name of the parallel simulator executable. The commandparallel_libr
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must be set in the strategy specification to request MPI as the p
handler, andevaluations asynchronous  must be set in the m
to enable distributed parallel computation of the simulator functio
changes are shown in Figure 8 and are stored in filedakota_containe

Figure 8 DAKOTA input file for the parallel container optimization example
Interface specification
        interface,                                              \
          application, system                                   \
          analysis_driver = ’container_p’

# Variables specification
        variables,                                              \
          continuous_design = 2                                 \
          cdv_descriptor ’H’ ’D’                                \
          cdv_initial_point 4.5 4.5                             \
          cdv_lower_bounds 0.0 0.0

# Strategy specification
        strategy,                                               \
          single_method                                         \
          parallel_library mpi

# Method specification
        method,                                                 \
          npsol_sqp                                             \
          evaluations asynchronous

# Responses speification
        responses,                                              \
          num_objective_functions = 1                           \
          num_nonlinear_constraints = 2                         \
          numerical_gradients                                   \
          method_source dakota                                  \
          interval_type central                                 \
          fd_step_size = 0.001                                  \
          no_hessians

Another possibility for the avoidance of the file read race conditio
DAKOTA file File taggingand UNIX shell scripting. For this approa
are used in to eliminate write conflicts when multiple instances of
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in parallel, and in the naming of temporary working directories. S
actually create temporary working directories for individual insta
which eliminates the read race condition. File tagging is enabled

parameters_file=        ’container.in’ \
results_file=           ’container.out’ \
file_tag

under theinterface  specification in Figure 8, and the analysis 
becomes

analysis_driver = ’container.script’ \

One of the serial container executables listed in Figure 3 through
shell scripting approach. The shell script file listing is given in Fig

Figure 9 UNIX shell script file for parallel DAKOTA.
#! /bin/csh -f
# $argv[1] is container.in.(fn_eval_num) FROM Dakota
# $argv[2] is container.out.(fn_eval_num) returned to Dakota

# create a unique temporary directory using $argv[1]
set num = ‘echo $argv[1] | cut -c 14-‘
mkdir workdir.$num

#make workdir.$argv[1] the current working directory
cp $argv[1] workdir.$num
cd workdir.$num

#run the container optimization interface from workdir.$argv[1]
../container $argv[1] $argv[2]

#move the completed output file to the dakota working directory
mv $argv[2] ../.

#remove the temporary working directory
cd ..
rm -rf workdir.$num
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The shell script is store in filecontainer.script  the DAKOTA in
in file dakota_container_pss.in in the$DAKOTA/test direc
interface possibilities exist within DAKOTA, seeImplementation of P

To execute DAKOTA in parallel mode it must be run within the pr
run on a workstation cluster under MPI, for example, you might e

mpirun -np 5 dakota -i dakota_container.in > dakota_out

The exact command would depend on how MPI is installed on y
detailed discussion seeRunning a parallel DAKOTA job . The outpu
Fortran version ofcontainer_p  are shown in Figure 10. The pa
the same as the serial results. The output file contains several li
DAKOTA is being run in a master-slave parallel mode and that th
evaluations are being distributed over the slave servers. For this
processors are used. One processor acting as the master runs D
processors act as slave servers by conducting simulator evaluat
made. If the number of processors is limited it is also possible in
the processors as both a master and slave. Since DAKOTA is no
expensive the processor can be shared between DAKOTA and t
evaluation without much performance loss.

Figure 10 Sample output results for a parallel DAKOTA run
MPI initialized with 6 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = npsol_sqp
gradientType = numerical
hessianType = none
Numerical gradients using 0.1% central differences
to be calculated by the dakota finite difference routine.
Optimality Tolerance        = 0.0001
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NOTE: NPSOL’s convergence tolerance is not a relative tolerance.
      See pp. 21-22 of NPSOL manual for description.
Derivative Level            = 3
Running MPI executable in parallel master-slave mode.
numSlaveServers = 5 procsPerAnalysis = 1 procRemainder = 0 parallelismLevel = 1
Running Single Method Strategy...

--------------------------------------
Begin Dakota finite difference routine
--------------------------------------

>>>>> Initial map for non-finite-differenced portion of response:

------------------------------
Begin Function Evaluation    1
------------------------------
Parameters for function evaluation 1:
                      4.5000000000e+00 H
                      4.5000000000e+00 D

(Parallel job 1 added to message passing queue)

>>>>> Dakota finite difference evaluation for x[1] + h:

------------------------------
Begin Function Evaluation    2
------------------------------
Parameters for function evaluation 2:
                      4.5045000000e+00 H
                      4.5000000000e+00 D

(Parallel job 2 added to message passing queue)

.

.

.

>>>>> Dakota finite difference evaluation for x[2] - h:

------------------------------
Begin Function Evaluation    5
------------------------------
Parameters for function evaluation 5:
                      4.5000000000e+00 H
                      4.4955000000e+00 D

(Parallel job 5 added to message passing queue)
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Synchronizing 5 asynchronous evaluations.
First pass: num_sends = 5
Master assigning fn. evaluation 1 to server 1
Master assigning fn. evaluation 2 to server 2
Master assigning fn. evaluation 3 to server 3
Master assigning fn. evaluation 4 to server 4
Master assigning fn. evaluation 5 to server 5
Waiting on all jobs.

Active response data for function evaluation 1:
Active set vector = { 1 1 1 }
                      1.0776762359e+02 obj_fn
                      8.0444076396e+00 nln_con1
                     -8.0444076396e+00 nln_con2

Active response data for function evaluation 2:
Active set vector = { 1 1 1 }
                      1.0783442171e+02 obj_fn
                      8.1159770472e+00 nln_con1
                     -8.1159770472e+00 nln_con2

.

.

.
Begin Function Evaluation   40
------------------------------
Parameters for function evaluation 40:
                      4.9556729812e+00 H
                      4.0359108491e+00 D

(Parallel job 40 added to message passing queue)

Synchronizing 5 asynchronous evaluations.
First pass: num_sends = 5
Master assigning fn. evaluation 36 to server 1
Master assigning fn. evaluation 37 to server 2
Master assigning fn. evaluation 38 to server 3
Master assigning fn. evaluation 39 to server 4
Master assigning fn. evaluation 40 to server 5
Waiting on all jobs.

Active response data for function evaluation 36:
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Active set vector = { 1 1 1 }
                      9.9062468783e+01 obj_fn
                      1.8074075570e-10 nln_con1
                     -1.8074075570e-10 nln_con2
.
.
.

Gradient-based optimization is only one type of DAKOTA analys
parallelism. Many of the other methods supported by DAKOTA a
parallel environment due to the independence of multiple functio
their design. The Monte Carlo, coordinated pattern search, and 
SGOPT are further examples where substantial speed increases
parallel environment for computationally expensive simulator eva
existence of independent function evaluation calls in each algori
DAKOTA methods for which parallel analysis can be used is giveS
Parallelism.
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Decision Tables for DAKOTA Me
Strategies

DAKOTA provides easy access to a large number of methods an
capabilities. These individual methods and strategies can be loo
components, any one of which may be applied in an overall ana
resource, these modules can be used to solve a wide range of in
Knowing when and where to use particular methods and/or strat
power and performance of DAKOTA, and give you a greater leve
analysis. This section will be primarily concerned with the classi
methods and strategies that are part of DAKOTA since they are 
Nondeterministic methods and parameter studies will also be dis

Optimization algorithms can be categorized by several different 
according to the uses for which they were designed. Whether th
continuous, discrete, or mixed parameters; is unconstrained or c
optimal solution or multiple possibilities; or has smooth or nonsm
constraint functions are some examples. As a first pass, several
classifications will be given and the associated methods will be c
form.

The types of constraints that an optimization algorithm is designe
of classification. Optimization algortihms are typically designed f
without constraints (unconstrained optimizers), or designed so th
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and lower bound constraints on the optimization parameters, line
nonlinear constraint functions. Categorization of the DAKOTA m
constraint classification is given in Table 1.
Table 1 Constraints

Constrained optimization algorithms are often designed as gene
unconstrained methods. This concept also holds between the diff
optimizers, i.e. nonlinearly constrained is often a generalization 
which is a generalization of bound constrained. Thus, little or no

Constraints Applicable Methods

unconstrained optpp_cg,
optpp_fd_newton,
optpp_g_newton,
optpp_newton,
optpp_q_newton, most
sgopt methods

bound
constrained

dot_bfgs, dot_frcg,
optpp_baq_newton,
optpp_bc_elipsoid,
optpp_bc_newton,
optpp_bcg_newton,
optpp_bcq_newton,
sgopt_pga_real,
sgopt_coord_ps

linearly
constrained

special handling with
npsol_sqp; otherwise
any nonlinearly
constrained method

nonlinearly
constrained

npsol_sqp, dot_mmfd,
dot_slp, dot_sqp
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be observed for similar methods when a constrained version is ap
problem, etc. This concept is reflected in Figure 11 where each 
constraint type encompasses previous constraint types. This typ
particularly true of the gradient-based optimizers.

Figure 11 Generalizations of optimizer constraint handling capabilities.

The type of variable that an optimization code can operate on is
classification. Optimization codes designed to handle continuou
are the most prevalent in DAKOTA. Optimization codes that acce
real and integer variables are also accessible from DAKOTA, as 

Unconstrained problems:

selected
OPT++,
SGOPT methods

Nonlinearly constrained problems:

constrained DOT, NPSOL

Bound constrained problems:

selected DOT and OPT++ methods
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continuous nondeterministic variables. Table 2 categorizes the D
the variables classification.
Table 2 Variables

Optimization problems involving minimization of strictly convex (
objective functions that are either unconstrained or have linear c
single local optimal solution. However, minimization problems in
constraints and/or nonconvex objective functions may have mult
solutions. Similar conclusions can be drawn for maximization pro
are designed to solve local optimization problems are typically m
terms of analysis time than ones that apply to global optimization
usually require vastly fewer function evaluations. However, it is o
the problem is global or local a priori. Thus, it is often necessary
global optimization algorithm. The available DAKOTA methods ar
or local in Table 3.

Variables Applicable Methods

continuous DOT, NPSOL, and
OPT++ methods, sao,
sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets,
sgopt_pga_real,
sgopt_strat_mc

discrete sgopt_pga_int

mixed sgopt_pga_mixed,
branch_and_bound
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A procedure for determining whether a problem is best suited fo
optimization can be somewhat of an art form. If the objective and
not known analytically, then it is unlikely that it will be possible to
without further information. In some cases it may be desirable to c
optimizers in a hybrid strategy in order to exploit the respective a
make some preliminary assessment of the objective and constrai
the parameter space. DAKOTA provides methods and strategies
types of analyses. SeeMultilevel Hybrid Optimization  andParamet
Capabilities for more details.
Table 3 Local vs. global

Optimization algorithms that have been designed to operate on 
sometimes suffer severe performance losses if the problems tha
actually nonsmooth. Table 4 categorizes DAKOTA methods as b
smooth or nonsmooth analysis. The term smooth is often used t
have theoretically continuous gradient and Hessian information.

Solution
Type

Applicable Methods

local DOT, NPSOL, and
OPT++ methods
(except optpp_pds),
sao, sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets

global optpp_pds,
sgopt_pga_real,
sgopt_pga_int,
sgopt_strat_mc
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this definition, numerical analysis is nonsmooth whenever finite 
used. However, in practice all the methods employed by DAKOT
some degree of nonsmoothness. What differentiates between the
nonsmooth here is whether or not they are immune to relatively 
nonsmoothness.

Gradient based methods cannot tolerate high levels of nonsmoo
comprise the smooth optimization category. Limiting their use to
functions is especially important when finite differencing is used to
However, if the nonsmoothness is small in comparison to change
the objective function over some parameter range, then they ma
this case methods intended for smooth optimization could provid
of obtaining large improvements in the objective function value. H
an optimal point can not be guaranteed, and if finite differencing
relatively large step size would be needed.

Determining when a smooth method is acceptable for use on a g
problem, is again, somewhat of an art form. It may be necessary
level of nonsmoothness present through use of DAKOTA’sParameter
Capabilities. As a rule of thumb, the finite difference step size sh
nonsmoothness in the neighborhood initial point is no more than
in the objective function in the same neighborhood. It should also
observed change in the objective function is a large scale change
local waviness. Similar considerations should be made for the co
close observation of the optimization results usually reveals that m
performed in the line search part of the optimization algorithm fo
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However, the total work performed is usually much less for than 
nonsmooth optimization code. This analysis could be followed u
nonsmooth optimization methods if further improvement in the o
needed.
Table 4 Smooth vs. nonsmooth

If you have access to a cluster of network-connected workstation
machine, then you can exploit parallelism in the execution of you
to reduce the overall analysis time. Given that the function evalu
algorithmic coarse-grained parallelism can be exploited in cases
independent function evaluations are made by the optimization c
supported by DAKOTA support at least some algorithmic coarse
one or more specific operating modes. Table 5 categorizes the a
based optimizers support speculative analysis in some modes. F
speculates that gradient information will be requested by the opt

Function
Surface

Applicable Methods

smooth gradient-based: DOT,
NPSOL, OPT++
methods (except
optpp_pds)

nonsmooth optpp_pds, sao,
sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets,
sgopt_pga_int,
sgopt_pga_real,
sgopt_strat_mc
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after a function evaluation request is made. By computing gradien
at the same time as the function evaluation, a reduction in the ov
achieved. However, the gradient information may not be used by t
on every iteration. A more general form of parallelism is support
gradient-based and all the other types of optimization programs.
independent function evaluations are always requested on every
speculative nature is not present.
Table 5 Algorithmic parallelism

Other classifications are also important. For instance, when func
extremely expensive, methods that typically require tens of thou
evaluations such as genetic algorithms or Monte Carlo analysis m
large parallel machine is available. The number of optimization p
factor. For nongradient-based methods, the probability of finding
function value on the next iteration step falls off quickly as the pr

Parallelism Applicable Methods

Serial standard DOT,
NPSOL, and OPT++
methods using analytic
and vendor numerical
gradients

Parallel DOT, NPSOL, and
OPT++ methods using
DAKOTA numerical
gradients, optpp_pds,
SGOPT methods
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increases. This is true even if the number of processors is scale
dimension.

Table 6 summarizes the previous classifications. Blank entries in
the category from the previous row.
Table 6 All inclusive summary

Variable
Type

Function
Surface

Solution
Type

Constraints Applicable

continuous smooth local unconstrained optpp_
optpp_fd_n
optpp_g_n
optpp_new
optpp_q_n

bound
constrained

dot_bfgs, d
optpp_baq
optpp_bc_
optpp_bc_
optpp_bcg
optpp_bcq

nonlinearly
constrained

npsol_sqp,
dot_slp, do

nonsmooth local bound
constrained

sgopt_coo
sgopt_coo
sgopt_solis

dependent on
underlying
optimizer

sao

global bound
constrained

sgopt_pga
sgopt_stra
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DAKOTA supports interfacing with a number of methods that are
optimization, and several strategies that incorporate optimization
have already been mentioned. These additional capabilities are 
nondeterministic analysis, parameter study, and optimization str
7.
Table 7 Other method and strategy classifications

nonlinearly
constrained

(coming so
sgopt_pga

discrete n/a global bound
constrained

sgopt_pga

mixed smooth local nonlinearly
constrained

branch_an

nonsmooth global bound
constrained

sgopt_pga
(coming so
sgopt_pga

General
classification

Applicable Methods

nondeterministic nond_probability,
nond_mean_value

parameter study centered_parameter_study,
list_parameter_study,
multidim_parameter_study,
vector_parameter_study

strategies branch_and_bound,
multi_level, ouu, sao

Variable
Type

Function
Surface

Solution
Type

Constraints Applicable
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Iterator and Strategy Hierarchies

Figure 12 Iterator and Strategy Hierarchies

The DAKOTA system is designed to accommodate optimization,
simulation, nonlinear least squares, and parameter study metho
hierarchy. These capabilities often complement each other in a p
study is used to investigate local design space issues in order to h
optimizer and optimizer controls, (2) optimization is used to find 
nondeterministic simulation is used to assess the affects of para
performance of the optimal design. Other classes of iterator meth
are envisioned, which “leverages” the utility of the interface deve
software effort in coordinating multiple instances of parallel simu
parallel computer (seeMultilevel parallelism ) is reusable among all
DAKOTA system. The inheritance hierarchy of these iterators is 

Iterator

OptimizerParameter Study Nondeterministic

Multilevel

SGOPTNPSOLDOT OPT++

SeqAp

MCarlo

Least Squar

GNewto

A
In

NonDOpt

MultiDVector

Branch&Bound

Strategy

MeanValue
List Centered
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Inheritance enables direct hierarchical classification of iterators 
commonality by limiting the individual coding which must be done
which make each iterator unique.

The iterator hierarchy is currently divided into four branches: the
contains optimization algorithms from the DOT, NPSOL, OPT++
the nondeterministic branch implements Mean Value and Monte C
methods, the least squares branch incorporates a Gauss-Newto
the OPT++ library, and the parameter study branch implements 
multidimensional parameter study methods. Refer to the overvie
Optimization Capabilities, Uncertainty Assessment Capabilities, N
Squares Capabilities, andParameter Study Capabilitiesfor more in
iterator branches, and refer toMethod Commands for information on
specification.

The strategy class hierarchy implements a variety of advanced a
multiple iterators from the iterator hierarchy can be instantiated a
models. These strategies coordinate multiple levels of iteration, m
adapt iterators and models (switch/refine control) based on obse
addition, strategies manage the distribution of tasks between the
processors in implementing parallelism (seeExploiting Parallelism). 
hybrid strategy uses multiple optimizers in succession with the be
being used as the starting point for a subsequent iterator. The si
shown) invokes a single iterator using a single model and can be
bypass. The branch and bound strategy is under development fo
continuous/discrete applications. The optimization under uncerta
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an uncertainty quantification within the optimization process. An
approximate optimization strategy, an optimizer is interfaced with
space representation from the hierarchy described inThe Approximat
Refer to the overview ofStrategy Capabilitiesfor more information
and procedures, and refer toStrategy Commands for  information on
specification.
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Introduction

Optimization methods in the DAKOTA system involve the manipu
constraint functions and potentially their gradient vectors and Hes
the number of objective functions must be1, since multi-objective op
formulations are not yet explicitly supported. Thus them functions in 
response data set are interpreted as1 objective function andm-1 cons
within the DAKOTA optimizer hierarchy.

Some optimizers (e.g., NPSOL) have the ability to distinguish con
with respect to the design variables from those which are nonlin
single matrix containing the coefficients of the linear constraint te
define the values of these constraints for all parameter sets. By p
optimizer which supports special handling of linear constraints, i
for the user to evaluate these constraints on every function evalu
will evaluate them internally (see[Gill, P.E., Murray, W., Saunders, M
M.H., 1986]). However, since most engineering applications invo
which are implicit functions of the design variables, a mechanism
linear constraint matrix has not yet been developed within DAKO
handling of linear constraints is not yet supported and linear con
as general nonlinear constraints (evaluated on every function ev

In DAKOTA, all nonlinear constraints are inequality constraints o

Therefore, constraints of the form c(X)≥ 0 must be converted to the
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Furthermore, each equality constraint h(X)= 0 must be implemented
signed inequality constraints: h(X)≤ 0 and -h(X)≤ 0.

When gradient and/or Hessian information is used in the optimiz
derivative components will be computed only with respect to theconti
variables. The omission of discrete variables from gradient vecto
is common among all iterators (since derivatives with respect to 
exist); however, inclusion of only the continuous design variables
study iterators (which assume derivatives with respect to all con
from nondeterministic analysis iterators (which assume derivativ
uncertain variables).
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DOT Library

The DOT library[Vanderplaats Research and Development, 1995c
programming optimizers, specifically the Broyden-Fletcher-Gold
(DAKOTA’s dot_bfgs  method) and Fletcher-Reeves conjugate 
dot_frcg method) methods for unconstrained optimization, and
feasible directions (DAKOTA’sdot_mmfd  method), sequential line
(DAKOTA’s dot_slp  method), and sequential quadratic program
dot_sqp method) methods for constrained optimization.

All DOT methods are local gradient-based optimizers which are 
navigation to a local minimum in the vicinity of the initial point. G
nonconvex design spaces may be missed. Other gradient based
optimization include theNPSOL Library .

DAKOTA controls the maximum number of iterations and functio
convergence tolerance, the output verbosity, and the optimizatio
methods from its input specification. SeeDOT Methods for additiona
method specifications.
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NPSOL Library

The NPSOL library[Gill, P.E., Murray, W., Saunders, M.A., and Wr
contains a sequential quadratic programming (SQP) implementa
npsol_sqp method). SQP is a nonlinear programming optimize
minimization.

NPSOL’s local gradient-based optimizer is best suited for efficien
minimum in the vicinity of the initial point. Global optima in nonc
may be missed. Other gradient based optimizers for constrained
DOT Library .

DAKOTA controls the maximum number of iterations and functio
convergence tolerance, the output verbosity, the verification leve
and the line search tolerance for NPSOL from its input specifica
Method for additional details on NPSOL specifications.

The NPSOL library generates diagnostics in addition to those ap
output stream. These diagnostics are written to the default FOR
fort.9  on the Sun Solaris architecture) in the working directory
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OPT++ Library

The OPT++ library[Meza, J.C., 1994]contains primarily nonlinear
optimizers for unconstrained minimization: Polak-Ribiere conjuga
optpp_cg  method), quasi-Newton, barrier function quasi-Newto
constrained quasi-Newton (DAKOTA’soptpp_q_newton , optpp_b
andoptpp_bcq_newton  methods), Gauss-Newton and bound 
Newton (DAKOTA’soptpp_g_newton andoptpp_bcg_newton
DAKOTA’s nonlinear least squares branch), full Newton, barrier fu
bound constrained full Newton (DAKOTA’soptpp_newton , optpp_
andoptpp_bc_newton  methods), finite difference Newton (DA
optpp_fd_newton  method), and bound constrained ellipsoid (
optpp_bc_ellipsoid method). The library also contains the P
method (parallel direct search[Dennis, J.E., and Torczon, V.J., 199
DAKOTA’s optpp_pds  method), and an input place holder for n
(DAKOTA’s optpp_test_new  method).

OPT++’s gradient-based optimizers are best suited for efficient n
unconstrained minimum in the vicinity of the initial point. Global 
design spaces may be missed. OPT++’s PDS method does not u
limited global identification abilities; it is best suited for problems
information is unavailable or is of questionable accuracy due to 
OPT++ methods support bound constraints, but none currently s
nonlinear constraints. For gradient-based optimization with const
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and theNPSOL Library  should be used. For OPT++’s least squa
Gauss-Newton.

DAKOTA manages the following inputs for OPT++ methods from
the maximum number of iterations and function evaluations, the
the output verbosity, the search method, the maximum step, the
initial radius for ellipsoid methods, and the search scheme size f
Methods for additional details on these specifications.

The OPT++ library generates diagnostics in addition to those ap
output stream. These diagnostics are written to the fileOPT_DEFAUL
working directory.
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SGOPT Library

The SGOPT (Stochastic Global OPTimization) library[Hart, W.E., 19
variety of global optimization algorithms, with an emphasis on st
SGOPT currently includes the following global optimization meth
integer-valued genetic algorithms (sgopt_pga_real , sgopt_pga_
stratified Monte Carlo (sgopt_strat_mc ). Evolutionary pattern s
simulated annealing, tabu search, and multistart local search (seThe 
Approach) are global methods which are under development bu
DAKOTA V1.0. Additionally, SGOPT includes several local searc
Solis-Wets (sgopt_solis_wets ) and coordinate pattern searchsg
sgopt_coord_sps ).

For expensive optimization problems, SGOPT’s global optimizer
identifying promising regions in the global design space. In multim
combination of global identification (from SGOPT) with efficient lo
DOT, NPSOL, or OPT++) can be highly effective. None of the SG
gradient-based, which makes them appropriate for discrete and 
as well as problems for which gradient information is unavailable
accuracy due to numerical noise. No SGOPT methods currently s
nonlinear constraints directly, although penalty function formulat
constraints have been employed with success[Ponslet, E.R., and Eld

DAKOTA manages the following inputs from its input specificatio
methods: maximum number of iterations, maximum number of f
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convergence tolerance, output verbosity, evaluation synchronizat
CPU seconds, and solution accuracy. In addition, each method h
which are specific to it alone. Refer toSGOPT Methods for addition
the SGOPT specifications.
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Introduction

Uncertainty assessment methods (also referred to as nondetermi
the DAKOTA system involve the computation of probability distri
functions based on sets of simulations taken from the specified 
for uncertain parameters. Thus them functions in the DAKOTA respo
interpreted asmgeneral response functions (with no distinction be
objective and constraint functions in the optimizer branch) within
uncertainty assessment hierarchy.

Within the variables specification, uncertain variable descriptions
the parameter probability distributions (seeUncertain Variables).

When gradient and/or Hessian information is used in the uncerta
assumed that derivative components will be computed only with
variables (where all uncertain variables are continuous). The om
variables from gradient vectors and Hessian matrices is common
derivatives with respect to discrete variables do not exist); howe
uncertain variables differs from parameter study iterators (which
respect to all continuous variables) and from optimization and le
(which assume derivatives with respect to the continuous design
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Monte Carlo Probability

The Monte Carlo probability iterator is selected using thenond_proba
specification. This iterator performs sampling for different param
a specified parameter distribution in order to assess the distribut
functions. Probability of occurrence is then assessed by compar
against response thresholds.

All Monte Carlo methods are sampling methods which can be ex
terms of the number of required function evaluations need to gene
A different nondeterministic approach that can be less computat
mean value method (seeMean Value).

DAKOTA controls the observations, the random seed, the sampl
Latin Hypercube), and the response thresholds for the Monte Ca
from its input specification. SeeMonte Carlo Probability Method  fo
on this method specification.



DAK  Value 76

C
O

S

D

In

U
A
C

ecification. This
tistics based on specified
tical method and does not

g, it can be much less
e Carlo
istribution assumptions
y evaluated.

ethod from its input
method specification.
OTA User’s Instructions (6/11/99) Capability Overview - Uncertainty Assessment Capabilities - Mean

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ncertainty
ssessment
apabilities

Draft Version

Mean Value

The mean value method is selected using thenond_mean_value  sp
iterator computes approximate response function distribution sta
parameter distributions. The mean value method is a direct analy
perform any random sampling.

Since the mean value method does not perform random samplin
computationally demanding than the Monte Carlo approach (seeMont
Probability ). However, since the method is based on Gaussian d
and linearizations, the accuracy of the statistics must be carefull

DAKOTA controls the response file names for the mean value m
specification. SeeMean Value Method for additional details on this
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Introduction

Nonlinear least squares methods in the DAKOTA system are opti
special structure of a least squares objective function. These pro
parameter estimation and test/analysis reconciliation. In order to
structure, response data at a “finer grain” are required. Rather th
objective function and its gradient, least squares iterators require
squares formulation along with its gradient as the data set returne
means that them functions in the DAKOTA response data set cons
terms in the sum-of-the-squares objective function, rather than a
m-1 constraint functions (as they are in the optimizer branch). Th
often called residuals in cases where they denote errors of obse
desired quantities. Refer toRosenbrock Problem Formulation for an
the relationship between optimization and least squares respons

This enhanced granularity allows for simplified computation of a
matrix which only uses residual derivative information, since term
which contain residual second derivatives also contain the residu
become negligible as the residuals tend towards zero. That is, re
gradient information is sufficient to define the value, gradient, and
the least squares objective function.

In practice, least squares solvers will tend to be significantly mor
purpose optimization algorithms when the residuals tend toward
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Least squares solvers may experience difficulty when the residu
significant.

As for optimization iterators, it is assumed that gradient and/or H
be computed only with respect to thecontinuous design variables. The
discrete variables from gradient vectors and Hessian matrices is
iterators (since derivatives with respect to discrete variables do n
inclusion of only the continuous design variables differs from par
(which assume derivatives with respect to all continuous variable
nondeterministic analysis iterators (which assume derivatives wit
variables).

In order to specify a least-squares problem, the responses secti
should be configured usingnum_least_squares_terms  to defin
functions, using eithernumerical_gradients , analytic_gradien
mixed_gradients  to define the gradients of these least squar
no_hessians , since no Hessian will be supplied from the simu
approximated internally).
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Gauss-Newton

Gauss-Newton iterators (DAKOTA’soptpp_g_newton  andoptpp_
methods) approximate the true Hessian matrix by neglecting ter
function values appear, under the assumption that the residuals
solution. The Gauss-Newton algorithm is part of the OPT++ pack[
For a more complete description of the OPT++ package, refer toOPT+

Gauss-Newton is a gradient-based algorithm and is best suited fo
local least squares solution in the vicinity of the initial point. Glob
nonconvex design spaces may be missed. DAKOTA’soptpp_g_newto
optpp_bcg_newton  methods differ in their support for bound c
bound constraints are commonly very important for keeping para
meaningful ranges,optpp_bcg_newton  will often be the method
parameter estimation.

Neitheroptpp_g_newton  noroptpp_bcg_newton  support ge
nonlinear constraints. If these types of constraints are present (f
estimation problems), general-purpose optimization methods suc
DOT and NPSOL libraries can be used (seeDOT Library  andNPSO
neither DOT nor NPSOL exploit the special structure of a sum o
function, both are effective general-purpose algorithms for solvin
minimization problems.
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DAKOTA manages the following inputs for the Gauss-Newton m
specification: the maximum number of iterations and function ev
convergence tolerance, the output verbosity, the search method
the gradient tolerance. SeeOPT++ Methods for additional details on
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Introduction

Parameter study methods in the DAKOTA system involve the co
data sets at a selection of points in the parameter space. The re
linked to any specific interpretation, so them functions in the DAKOT
which are being catalogued by the study can consist of any optim
generic response function definition which is allowable by the re
specification (seeResponses Commands). This allows a parameter
used in direct conjunction with optimization, least squares, and u
iterators without significant modification to the input file. In additi
are not restricted to function values only; gradients and Hessians
can also be catalogued by the parameter study. This allows for s
“sensitivity analysis”: (1) the variation of function values over par
indirect information on the sensitivity of the functions to those pa
information can be computed numerically, provided analytically b
(mixed gradients) in directly determining sensitivity information a
parameter space, and (3) the variation of derivative quantities thr
can be investigated.

In addition to the cited sensitivity analysis applications, paramete
also commonly used for investigating simulation nonsmoothness
can be tuned for use with gradient-based optimization algorithm
and response ensembles for response surface generation or par
and performing code verification (verifying simulation robustness
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ranges of interest. A parameter study iterator can also be used as
identify a good starting point) or a post-processor (for post-optim
multilevel hybrid optimization strategy (seeMultilevel Hybrid Optimi
each parameter study iterator can accept the best design point fo
its starting point or pass along its best design point for subseque
that only those parameter studies which use initial values (seeInitial V
affected by accepting the best design point from previous iteratio
found in a parameter study is defined to be the point with the lea
if there are no violations, the point with the lowest objective func

Parameter study iterators will iterate any set of variables (any co
uncertain, and state variables) into any set of responses (any fu
Hessian definition), so there are no restrictions on valid data set
specifically, parameter study iterators draw no distinction betwee
variables and different types of response functions. They simply
defined in the variables specification into the interface, from whic
all of the responses defined in the responses specification. The 
involves the set of variables for which function derivatives are co
and/or Hessian information is being catalogued in the paramete
that derivative components will be computed with respect to all o
variables (continuous design, uncertain, and state variables) spe
discrete variables from gradient vectors and Hessian matrices is
iterators (since derivatives with respect to discrete variables do n
inclusion of all continuous variables differs from optimization and
(which assume derivatives only with respect to the continuous d
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nondeterministic analysis iterators (which assume derivatives on
uncertain variables). Lastly, while discrete variables (if present) w
the interface, enumeration of the discrete values of these variabl
methods is not yet supported.

Initial Values

The vector and centered parameter studies use the initial values
variables commands specification (seeVariables Commands) as the
the central point of the parameter studies, respectively. In the cas
initial_point  is used. In the case of state variables, theinitial_st
In the case of uncertain variables, there is no initial value specifi
initially for each of these variables (NOTE: the mean might be a 
Therefore, in the following discussions, “Initial Values” are define
initial_point , initial_state , and 0.0 for the design, sta
variables specified in the study, respectively.

Data Cataloguing

All parameter study algorithms catalogue the parameters and re
evaluation in a special file nameddakota_pstudy.dat . This file i
simplify plotting of parameter study data by making the data ava
separate from the other information available in the main output fi
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Vector Parameter Study

The vector parameter study computes response data sets at sel
dimensional vector in parameter space. This capability encompa
coordinate parameter studies (to study the effect of a single vari
well as multiple coordinate vector studies (to investigate the resp
some n-dimensional vector). In addition to these uses, this capa
within the implementations of the centered and multidimensiona
Centered Parameter Study andMultidimensional Parameter Stud

Dakota’s vector parameter study includes three possible specific
are used in conjunction with the Initial Values to define the vecto
parameter study:

{final_point = <LISTof><REAL>} and {step_length = <REAL>}
{final_point = <LISTof><REAL>} and {num_steps = <INTEGER>}
{step_vector = <LISTof><REAL>} and {num_steps = <INTEGER>}

In each of these three cases, the Initial Values are used as the p
point and the specification selected from the three above defines
of the vector as well as the increments to be evaluated along the
starting from Initial Values of 1.0, 1.0, 1.0 are included below:

final_point  = 1.0, 2.0, 1.0 andstep_length  = .4:
Parameters for function evaluation 1:
                      1.0000000000e+00 d1
                      1.0000000000e+00 d2
                      1.0000000000e+00 d3
Parameters for function evaluation 2:
                      1.0000000000e+00 d1
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                      1.4000000000e+00 d2
                      1.0000000000e+00 d3
Parameters for function evaluation 3:
                      1.0000000000e+00 d1
                      1.8000000000e+00 d2
                      1.0000000000e+00 d3

final_point  = 2.0, 2.0, 2.0 andstep_length  = .4:
Parameters for function evaluation 1:
                      1.0000000000e+00 d1
                      1.0000000000e+00 d2
                      1.0000000000e+00 d3
Parameters for function evaluation 2:
                      1.2309401077e+00 d1
                      1.2309401077e+00 d2
                      1.2309401077e+00 d3
Parameters for function evaluation 3:
                      1.4618802154e+00 d1
                      1.4618802154e+00 d2
                      1.4618802154e+00 d3
Parameters for function evaluation 4:
                      1.6928203230e+00 d1
                      1.6928203230e+00 d2
                      1.6928203230e+00 d3
Parameters for function evaluation 5:
                      1.9237604307e+00 d1
                      1.9237604307e+00 d2
                      1.9237604307e+00 d3

final_point  = 2.0, 2.0, 2.0 andnum_steps  = 4:
Parameters for function evaluation 1:
                      1.0000000000e+00 d1
                      1.0000000000e+00 d2
                      1.0000000000e+00 d3
Parameters for function evaluation 2:
                      1.2500000000e+00 d1
                      1.2500000000e+00 d2
                      1.2500000000e+00 d3
Parameters for function evaluation 3:
                      1.5000000000e+00 d1
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                      1.5000000000e+00 d2
                      1.5000000000e+00 d3
Parameters for function evaluation 4:
                      1.7500000000e+00 d1
                      1.7500000000e+00 d2
                      1.7500000000e+00 d3
Parameters for function evaluation 5:
                      2.0000000000e+00 d1
                      2.0000000000e+00 d2
                      2.0000000000e+00 d3

step_vector  = .1, .1, .1 andnum_steps  = 4:
Parameters for function evaluation 1:
                      1.0000000000e+00 d1
                      1.0000000000e+00 d2
                      1.0000000000e+00 d3
Parameters for function evaluation 2:
                      1.1000000000e+00 d1
                      1.1000000000e+00 d2
                      1.1000000000e+00 d3
Parameters for function evaluation 3:
                      1.2000000000e+00 d1
                      1.2000000000e+00 d2
                      1.2000000000e+00 d3
Parameters for function evaluation 4:
                      1.3000000000e+00 d1
                      1.3000000000e+00 d2
                      1.3000000000e+00 d3
Parameters for function evaluation 5:
                      1.4000000000e+00 d1
                      1.4000000000e+00 d2
                      1.4000000000e+00 d3

For additional information, refer to the commands specification fVe
Study.
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List Parameter Study

The list parameter study computes response data sets at select
space. These points are explicitly specified by the user and are 
line or surface.

This iterator requires the following specification:
{list_of_points = <LISTof><REAL>}

This parameter study simply performs simulations for the first pa
entries in the list), followed by the next parameter set (the nextn entrie
the list of points has been exhausted. Since the Initial Values wil
not be specified.

An example specification which would result in the same parame
example inVector Parameter Study would be:

list_of_points = 1.0, 1.0, 1.0, 1.0, 1.4, 1.0, 1.0, 1.8, 1.0

For additional information, refer to the commands specification fLis
Study.
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Centered Parameter Study

The centered parameter study executes multiple vector paramet
parameter, centered about the specified Initial Values. This is us
function contours in the vicinity of a specific point. For example, 
optimum design, this capability could be used for post-optimality a
the computed solution is actually at a minimum or constraint bou
investigating the shape of this minimum or constraint boundary.

This iterator requires the following specifications:
{percent_delta = <REAL>}
{deltas_per_variable = <INTEGER>}

wherepercent_delta  specifies the size of the increments in p
deltas_per_variable specifies the number of increments pe
plus and minus directions.

For example, with Initial Values of 1.0, 1.0,percent_delta  = 10.0
deltas_per_variable  = 2, five function evaluations (two min
point, and two plus deltas) would be performed per variable:

Parameters for function evaluation 1:
                      8.0000000000e-01 d1
                      1.0000000000e+00 d2
Parameters for function evaluation 2:
                      9.0000000000e-01 d1
                      1.0000000000e+00 d2
Parameters for function evaluation 3:
                      1.0000000000e+00 d1
                      1.0000000000e+00 d2
Parameters for function evaluation 4:
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                      1.1000000000e+00 d1
                      1.0000000000e+00 d2
Parameters for function evaluation 5:
                      1.2000000000e+00 d1
                      1.0000000000e+00 d2
Parameters for function evaluation 6:
                      1.0000000000e+00 d1
                      8.0000000000e-01 d2
Parameters for function evaluation 7:
                      1.0000000000e+00 d1
                      9.0000000000e-01 d2
Parameters for function evaluation 8:
                      1.0000000000e+00 d1
                      1.0000000000e+00 d2
Parameters for function evaluation 9:
                      1.0000000000e+00 d1
                      1.1000000000e+00 d2
Parameters for function evaluation 10:
                      1.0000000000e+00 d1
                      1.2000000000e+00 d2

This set of points in parameter space is depicted in Figure 13

Figure 13 Example centered parameter study.

d1

d2

1

0
1
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For additional information, refer to the commands specification foCe
Study.
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Multidimensional Parameter Stu

The multidimensional parameter study computes response data
hypergrid of points. Each continuous variable is partitioned into e
between its upper and lower bounds, and each combination of th
partitions is evaluated. The number of function evaluations perfo

The partitions information is specified as follows:
{partitions = <LISTof><INTEGER>}

where the entries in the list specify the number of partitions for e
(i.e., ). Since the Initial Values will not be used, they

In a two variable example problem with d1∈ [0,2] and d2∈ [0,3] (as d
and lower bounds specified in the variables specification) and wpar

partitions i 1+( )
i 1=

n

∏

partitions i
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2,3 , the interval [0,2] is divided into two equal-sized partitions a
divided into three equal-sized partitions. This two-dimensional g

Figure 14 Example multidimensional parameter study

 would result in the following twelve function evaluations:
Parameters for function evaluation 1:
                      0.0000000000e+00 d1
                      0.0000000000e+00 d2
Parameters for function evaluation 2:
                      1.0000000000e+00 d1
                      0.0000000000e+00 d2
Parameters for function evaluation 3:
                      2.0000000000e+00 d1
                      0.0000000000e+00 d2
Parameters for function evaluation 4:
                      0.0000000000e+00 d1
                      1.0000000000e+00 d2
Parameters for function evaluation 5:
                      1.0000000000e+00 d1
                      1.0000000000e+00 d2

d1

d2

1

2

3

0 1 2

3 partitions

2 partitions
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Parameters for function evaluation 6:
                      2.0000000000e+00 d1
                      1.0000000000e+00 d2
Parameters for function evaluation 7:
                      0.0000000000e+00 d1
                      2.0000000000e+00 d2
Parameters for function evaluation 8:
                      1.0000000000e+00 d1
                      2.0000000000e+00 d2
Parameters for function evaluation 9:
                      2.0000000000e+00 d1
                      2.0000000000e+00 d2
Parameters for function evaluation 10:
                      0.0000000000e+00 d1
                      3.0000000000e+00 d2
Parameters for function evaluation 11:
                      1.0000000000e+00 d1
                      3.0000000000e+00 d2
Parameters for function evaluation 12:
                      2.0000000000e+00 d1
                      3.0000000000e+00 d2

For additional information, refer to the commands specification fMu
Parameter Study.
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Introduction

Dakota’s strategy layer was developed to provide a means for m
iterators, models, and approximations. It was driven by the obse
“meta-control” of optimization and other system analysis proces
additional level of logic on top of the iterators, it becomes possib
strategies which switch and refine iterators and models based o
assessments. This adaptive control can lead to automated proce
capabilities of several iterators, manage varying model fidelity, a
approximations for the purpose of navigating to the solution mor
than with single method approaches.

Several advanced approaches are available within the strategy c
Figure 12. In the multilevel hybrid strategy, two or more optimize
hybrid strategy in which the best point from one iterator is used a
subsequent iterator. Fine-grained control, effective switching met
multiple iteration follow-on candidates from some global method
issues. The single method strategy invokes only one iterator and
through” strategy in that no additional coordination is performed
control falls through to the iterator. The branch and bound strate
mixed continuous/discrete applications. The nondeterministic opt
optimization under uncertainty) incorporates an uncertainty quan
optimization process. It can be used to minimize stochastic quan
of failure. Use of nested and segregated frameworks is an impor
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sequential approximate optimization strategy, an optimizer is inte
approximate design space representation in order to find an appr
“Exact” evaluations at this approximate optimal solution are then
approximation and restart the sequence. Here, the effective use
techniques, the development of accurate approximations using a
function evaluations, and the development of provably converge
sequential approximation are important research issues.

In addition to management of multiple iterators and models, the s
the master-slave algorithm for exploiting parallelism by providing
code (the master processor) from model server code (the slave 
Exploiting Parallelism for additional details.

Several strategies continue to be works in progress. Therefore, “S
been added at the end of each of the following strategy descript
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Single Method

The single method strategy is implemented within theSingleMethodS
invoked with thesingle_method  selection in the user’s strategy
(seeSingle Method Commands for additional specification details
strategy is also used as the default strategy if no strategy specifi
user’s input file.

The single method strategy is used to invoke a singleDakotaIterator  
iterates on a singleDakotaModel object. This “strategy” is provided
program of DAKOTA is bound to the instantiation and execution 
within theDakotaStrategy class hierarchy. That is, even if coordin
iterators and models is not needed, a simple strategy is still requ
and the model and perform the iteration.

STATUS: Fully operational.



DAK ization 100

C
O

S

D

In

C

tStrategy  class
egy section
dditional
ilable: the uncoupled
proach.

 the order specified in a
used as the starting point
eparate convergence
 own internal
pletion may be

) or iteration
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Multilevel Hybrid Optim

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version

Multilevel Hybrid Optimization

The multilevel hybrid strategy is implemented within theMultilevelOp
and is invoked with themulti_level  selection in the user’s strat
specification (seeMultilevel Hybrid Optimization Commands  for a
specification details). There are three multilevel approaches ava
approach, the uncoupled adaptive approach, and the coupled ap

The Uncoupled Approach

In the uncoupled approach, a sequence of methods is invoked in
method list specification. The best solution from each method is
for the following method. Method switching is governed by the s
controls of each method; that is,each iterator is allowed to run to its
definition of completion without interference. Individual method com
determined by convergence criteria (e.g.,convergence_tolerance
limits (e.g.,max_iterations ).

The basic algorithm, in simplified form, is shown in Figure 15:
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Figure 15 Uncoupled multilevel hybrid optimization strategy

whererun_iterator()  andbest_variables()  are virtual fu
define a generic behavior valid for all iterators for which the spec
vary. This strategy is relatively simple since the only coordination
transferral of the best solution between successive iterators.

STATUS: Fully operational.

The Uncoupled Adaptive Approach

The simple uncoupled approach is being extended through deve
grained iterator control using “iterator++” overloaded operators. 
optimization algorithms are incremented one optimization cycle a
performance data are returned as a basis for adaptive switching
based optimization cycle consists of computing objective and co
computing a search direction using these gradients, and perform
search direction to find an improved point. By executing an optim
a history of improved points can be logged and relative performa
defined. These performance metrics are fundamentally different

Run iterator

Trans

to completion

to nex

for (i=0; i<numIterators; i++) {
 iterators[i].run_iterator();
  if (i+1 < numIterators) {
   vars_star = iterators[i].best_variables();

   iterators[i+1].design_variables(vars_star);
  }
}

best v

iterato
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metrics used in the nonadaptive approach: convergence metrics
the method can make any additional progress within a specified
Kuhn-Tucker conditions for a constrained minimum approximate
performance metrics measure the rate of progress (i.e., has the 
objective minimization and/or constaint satisfaction decreased s
distinction is somewhat fuzzy since some convergence metrics (
tolerance on relative change in the objective function) are simila
metric, the key point is that we may want to terminate a method 
convergence and switch to another method. Put another way, this
“are we there?” versus “how fast are we getting there?” Certainly
most appropriate when one method is available; however, the av
methods in a hybrid strategy admits a more aggressive approac

The basic algorithm, in simplified form, is shown in Figure 16:

Figure 16 Uncoupled adaptive multilevel hybrid optimization strategy

where the overloaded++ operator,best_responses() , andbest_
are virtual functions, andprogThreshold  contains a user specifi

Increment 1
Get results
Compute pr

for (i=0; i<numIterators; i++) {
  while (progMetric >= progThreshold) {
    iterators[i]++;
    r_star = iterators[i].best_responses();
    progMetric = compute_progress(r_star);
  }
  if (i+1 < numIterators) {
    vars_star = iterators[i].best_variables();

    iterators[i+1].design_variables(vars_star);
  }
}

Transfe

to next
best var

iterator

Optimization lo
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(seeMultilevel Hybrid Optimization Commands ). This strategy re
more sophistication than the standard uncoupled approach sinc
for cycle control and progress computation are required for all of

Definition of an appropriate progress metric can be troublesome
encompass broad classes of methods. In general, the DAKOTA 
compute rate of convergence history information over a series o
When rate of improvement slows from previous cycles, theprogMetri
between 0.0 and 1.0) will be small and may fall below theprogThresh
a method switch. By selecting a largeprogThreshold  value (close
can specify aggressive method switching in which a slight decre
will trigger a switch, whereas a smallprogThreshold  (closer to 0
considerably more tolerant of (perhaps transient) decreases in c
latter case, the adaptive approach may perform much like the un
fact, the internal convergence criteria may trigger method compl
progMetric  triggering a method switch.

STATUS: adaptive “iterator++” approach under development.

The Coupled Approach

The coupled approach implements specific hybrid algorithms av
which exploit a tighter coupling to achieve peak performance. Fo
uncoupled GA/local search hybrid would use the best solution fo
local search, a coupled hybrid would use local search to occasion
an evolving GA population. That is, in an uncoupled approach, m
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at a time sharing only their best results at completion, while in a
methods are working together throughout the strategy to synerg
solution.

Whereas in the uncoupled approach, the number of methods an
are unlimited, the coupled approach has only a few allowable me
two methods are specified (as opposed to an open-ended metho
and one local method. The allowable global methods are currensgo
andsgopt_strat_mc , and the allowable local methods are cur
sgopt_solis_wets , sgopt_coord_ps , andsgopt_coord_sps
will be allowable selections in future releases. In thesgopt_pga_real
search is used to periodically improve GA population members. 
sgopt_strat_mc  case (also known as “multi-start local search
applied with a prescribed probability to Monte Carlo samples. W
performed, it is performed immediately (prior to evaluation of the
of iterator coordination makes it a coupled approach by definitio
only differs from an uncoupled approach (in which local searche
after all sampling was complete) in the effect of order-dependent
asmax_function_evaluations  and, possibly, in how iteratio
candidates are selected. Thesgopt_strat_mc  coupled hybrid is n
sophisticated hybrid and is not recommended for optimization wit
simulations. It is primarily useful for its theoretical simplicity as a
comparison with more efficient approaches (i.e., the GA coupled

STATUS: strategy wrapper for SGOPT multi-start and global/loc
development.
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Sequential Approximate Optimiz

The sequential approximate optimization strategy is implemente
SeqApproxOptStrategy class and is invoked with theseq_approxim
selection in the user’s strategy section specification (seeSequential A
Optimization Commands for additional specification details).

In theseq_approximate_opt  strategy, two models (actualMode
approxModel ) and one iterator (selectedIterator ) are cons
approxModel contains one of the approximation methods from
in The Approximation Interface and theactualModel contains o
interfacing methods described inThe Application Interface. First, th
within approxModel is built using function evaluations which are
of experiments and which are performed with theactualModel . Th
selectedIterator  then iterates onapproxModel  (it is bound 
strategy constructor) and computes an approximate optimum. T
is evaluated with theactualModel  and the resulting parameter/r
evaluated for improvement from the previous cycle and for conve
Based on the observed improvement, the extent (i.e. bounds) of
modified via trust region concepts. If the process is not converge
parameter/response pair from theactualModel  is used to update 
Iteration is then reinitiated on the updatedapproxModel  and the pr
convergence. It is worth emphasizing that the iterator only iteratea
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TheactualModel  is only used for building and updating the ap
never iterated directly.

The basic algorithm, in simplified form, is shown in Figure 17:

Figure 17 Sequential approximate optimization strategy

whererun_iterator()  andbest_variables()  are virtual fu
iterator hierarchy andbuild_approximation() , modify_approx
andupdate_approximation()  are virtual functions within the
It is critical for themodify_approximation()  step to perform 
modify trust regions) which assure convergence of the sequentia

STATUS: Operational, but undergoing convergence enhanceme

Evaluate
Modify e
Add new

Main loop:
approxModel.build_approximation();
while (conv_metric > conv_tol) {

selectedIterator.run_iterator();
v_star = selectedIterator.best_variables();
r_star = actualModel.compute_response(v_star);
approxModel.modify_approximation(r_star);
approxModel.update_approximation(v_star,r_star);

}

Initialize app

Get appr
Optimize
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Optimization Under Uncertainty

The optimization under uncertainty strategy is implemented with
NonDOptStrategyclass and is invoked with theopt_under_uncertain
in the user’s strategy section specification (seeOptimization Under U
Commands for additional specification details).

In theopt_under_uncertainty  strategy, two models (designMo
uncertainModel ) and two iterators (optIterator  andnonDIte
constructed. ThedesignModel  provides a mapping of a set of de
set of design responses (an objective function and constraints) t
interface, whereas theuncertainModel  maps a set of uncertain
uncertain responses through another interface. TheoptIterator  ite
designModel  in the optimization loop and thenonDIterator  ite
uncertainModel  in the uncertainty quantification loop. Note tht
both models are deterministic; it is the ensemble ofuncertainModel
on the set of uncertain variable realizations that provide the desi
uncertain responses.

In the case of a nested approach, the optimization loop is the ou
optimize a nondeterministic quantity (e.g., minimize probability o
uncertainty quantification inner loop evaluates this nondetermini
compute the probability of failure) on each optimization function 
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For a segregated approach, the loops are not nested, rather the
succession until convergence. The coupling of the uncertainty qu
process occurs through the adjustment of the optimization objec
order to modify the statistical performance of the optimal design c
the probability of failure of a minimum weight design by changin
The nested approach is desirable since it removes the compoun
loops; however, the logic for modifying the design objectives is h
dependent.

STATUS: Under development. Not yet operational.
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Branch and Bound

The branch and bound strategy is implemented within theBranchBnd
is invoked with thebranch_and_bound  selection in the user’s st
specification (seeBranch and Bound Commands for additional spe

It employs the PICO branching engine ([Eckstein, J., Hart, W.E., an
1997]) in combination with DAKOTA’s multilevel parallelism facilit
and Schimel, B.D., 1999]) to enable parallel solution of nonlinear 
discrete problems through parameter domain decomposition (br
solution of optimization subproblems with relaxation of integrality

STATUS: Operational. To be available in DAKOTA V1.2.
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Dakota Interface Abstraction

DAKOTA’s interfacing capabilities are encompassed within an in
abstraction is the general concept of mapping a set of paramete
for the purpose of performing a function evaluation. The implem
abstraction within theDakotaInterface class hierarchy involves the
evaluation mechanisms and communication protocols, each of w
functionality of parameter to response mapping. Supported eval
currently include interfacing with simulation codes, employing re
and employing internal testing functions. And currently supporte
protocols include system calls with file communication, direct fun
parameter list communication, and parallel message-passing (fo
communication with simulations or in combination with system c
invocation and communication). In addition, coordination of disc
multidisciplinary optimization with the global sensitivity equations
to the supported evaluation mechanisms, and CORBA and JAVA
geographically distributed analysis services (e.g., for interface w
based Product Realization Environment) is an attractive extensio
communication protocols. These additions will continue to extend
DAKOTA problem solving environments.

DAKOTA provides a framework for the implementation of these e
and communication protocols within theDakotaInterface class hiera
Figure 18. TheDakotaInterface base class provides the starting p
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specialized interface mechanisms are created. This base class c
function which each derived class must redefine in order to impl
mechanism for generating responses from a set of parameters. F
provides the envelope for derived letter classes in a letter/envelo
letter/envelope idiom is an advanced C++ construct which provid
enhanced polymorphism (the envelope is a generic handle for a
smart memory management through reference counting[Coplien, J.O

Figure 18 The DakotaInterface class hierarchy

TheApplicationInterface andApproximationInterface classes pro
those interfaces dealing with simulation codes and response app
Within theApplicationInterface  branch, simulation codes may be
system calls (theSysCallApplicInterface class) or through direct fu
DirectFnApplicInterface  class). The system call application inter
with the simulation it spawns through the use of files. In this cas
important (seeDAKOTA File Data Formats ). However, in the direct
interface case, C++ references to data structures are passed dire
and specialized data formats are not needed. In addition to invoki

DakotaInterface

ApproximationInterfaceApplicationInterface

DirectFnSysCall RSMANN MARS MPA
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linked into the DAKOTA executable, the direct function applicatio
for algorithm testing with internal test functions, so it serves a du

TheApproximationInterface  branch implements a variety of appr
be used as surrogates in place of actual simulations. TheANNApproxI
RSMApproxInterface , andMARSApproxInterface  classes implem
networks, response surface methods, and multivariate adaptive 
respectively. In addition, anMPAApproxInterface  class is planned 
multipoint approximations. Each of these approximation classes
for building, updating, modifying, and performing function evalua
approximation.
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The Application Interface

Figure 19 The Application Interface Concept

By providing a generic interface for the mapping of a set of param
design variables) into a set of responses (e.g., an objective func
sensitivities), the Application Interface hides the specific complex
from the iterator method. All of an application’s disciplinary specifi
details are encapsulated within the Application Interface box inFigure
box, the data flows between the iterator and the simulator are ge
Isolation of complexity through the development of generic interf
object-oriented design (the concept of “one interface, many meth

Housed within the Application Interface are three main compone
program (“IFilter” inFigure 19) provides a communication link wh
of DAKOTA input parameters into the input required by the simu
simulator program reads its input and computes its results (a dri
optional and is used to accomplish nontrivial command syntax a
monitoring). Finally, the output filter program (“OFilter” inFigure 19)

IFilter OFiltersimulator
program

Application Interface

Parameters Respon

Iterator

Optional
Analysis Driver
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communication link through the recovery of data from the simula
computation of the desired response data set. The two filter prog
application specific, although it is a project goal to maximize reus
up of generic libraries of filtering capabilities over time. Note tha
filters are part of the Application Interface and are named “input”
the simulator program.

The Application Interface mapping can be accomplished in seve
currently in use are the direct function and system call methods.
invocation of linked-in functions to perform the parameter to resp
the latter uses system calls to external programs and file-based c
the mapping. In both of these cases, either a 3-piece interface or
used, which differ in whether or not they use filter programs. The
describe these two approaches as embodied in the direct function
system call application interface classes.

Following the discussion of the direct function and system call a
techniques for capturing simulation failures within application int
Failure recovery options include abort, retry, recover, and contin
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The Direct Function Application 

The direct function application interface capability may be used 
codes which are linked into the DAKOTA executable or to invoke
for algorithm performance testing. This option, in an earlier incar
TWAFER CVD heater design application ([Moen, C.D., Spence, P.A
Plantenga, T.D., 1996], [Moen, C.D., Spence, P.A., and Meza, J.C
J.C., and Plantenga, T.D., 1995]) in order to improve data precisio
eliminating system calls for filter programs and file transfer of para
this earlier incarnation, a system call was still required for the sim
although the TWAFER filters were compiled into the Dakota exe
simulation code was not. In the current direct function and syste
entire parameter to response mapping must be accomplished w
direct function calls. No combinations are allowed.

In order to use the direct function capability with a new simulatio
(not previously interfaced), the following steps have to be perform

1. the functions to be invoked must have their main programs 
functions with the following prototype:int function_name(cons
DakotaVariables& vars, const DakotaIntArray& asv,
DakotaResponse& response) . The same prototype is u
analysis programs (which departs from the distinctions betw
shown in the command line file name passing procedures oThe 
Application Interface).
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2. the if-else blocks inDirectFnApplicInterface::execute() must b
include the new function names with the proper prototypes

3. the DAKOTA system must be recompiled and linked with th
files or libraries

Various header files will have to be included in order to compile s
theDirectFnApplicInterface class (in order for the class to recogn
and within the new functions themselves (in order to recognize thDak
DakotaIntArray , andDakotaResponse  types).

The direct function capability is new and evolving. Future work m
the dependence of user-supplied routines on DAKOTA objects b
with more fundamental data structures (vectors of ints and double
“builder pattern” (see[Gamma, E., Helm, R., Johnson, R., and Vli
management of multiple user-supplied routines.

3-piece Interface

In the 3-piece case, the parameters to responses mapping occu
of the functions identified by theinput_filter , analysis_driver
output_filter  specifications will be invoked in succession.
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1-piece Interface

If the analysis_driver  specified in the interface section is to 
parameters to responses mapping and no additional filters are n
function invocation will occur. This 1-piece interface is accomplis
the “NO_FILTER” option (the default) in theinput_filter  andou
specifications.
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The System Call Application Inte

The system call approach invokes a simulation code or simulatio
system  function from the C standard library ([Kernighan, B.W., and
1988]) to create a new process. This new process communicate
parameter and response files. The system call approach elimina
simulation source code since the simulation can be initiated via 
procedure and then coordinated with any variety of tools for pre- a
simulation can be viewed as a “black box” for which the filter pro
communication links and the parameters and responses files pro
data. This approach has been widely used in[Eldred, M.S., Hart, W.E
Romero, V.J., Hutchinson, S.A., and Salinger, A.G., 1996], [Eldred,
D.E., Bohnhoff, W.J., Witkowski, W.R., Romero, V.J., Ponslet, E.
1996], and many others. The system call approach involves mor
the direct function approach; however, this is most often of very 
compared to the expense of the simulations. Lastly, the system 
from precision problems if care is not taken to preserve data pre
response file I/O. The following sections describe system call func
separate filter programs (the 3-piece interface) and no filter prog
interface).

3-piece Interface

The syntax of the system call that Dakota performs for a 3-piece
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(ifilter_name params.in; analysis_driver_name; ofilter_name results.out)

in which the input filter, analysis, and output filter processes are 
system call through the use of semi-colons and parentheses (se[Ande
Anderson, P., 1986]). This single system call is equivalent to 3 se
however, they are bound together to simplify asynchronous proce
receive synchronization operations).

The input filter is passed the name of the parameters file on the 
output filter is likewise passed the name of the results file on the
passing the names of files on the command lines of executable 
communicate with these executables using unique and/or tagge
temporary files or root names tagged with function evaluation num
of using unique file names allows for multiple simultaneous simu
common disk space.

1-piece Interface

If the analysis_driver  specified in the interface section is to 
parameters to responses mapping and no additional filters are n
process will appear in the system call. This 1-piece interface is a
use of the “NO_FILTER” option (the default) in theinput_filter
output_filter  specifications.

The system call syntax is:
(analysis_driver_name params.in results.out)
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Since there are no filters, the names of the parameters and resu
the command line to theanalysis_driver .

Additional Features

This section describes interfacing options for file saving, file tagg
files, and common filtering operations. For details on specificatio
to Interface Commands. When executing DAKOTA, the actual sy
as well as informational messages on file renaming or removal a
order for the user to verify proper operation of the software.

File saving

Thefile_save  option in the interface specification allows the u
parameters and results files are retained or removed from the w
behavior is to remove files once their use is complete in order to
directories. However, by specifyingfile_save in the interface spe
will not be removed. This latter behavior is often useful for debug
between Dakota and simulator programs.

File tagging

Thefile_tag option in the interface specification allows the use
the parameters and results files unique by appending a function
root file names specified in theparameters_file  andresults_file
specifications. Default behavior is to not tag these files. The defa
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advantage of allowing the user to ignore command line argument
and write to/from the same file names, but has the disadvantage
may be overwritten from one function evaluation to the next. On 
specifyingfile_tag  in the interface specification, these files be
the appended evaluation number. This is most often used when 
simulations are running in a common disk space, since it becom
conflicts (file overwriting) between the simultaneous simulations
files according to their evaluation number.Special case:Whenfile_sa
without file_tag , untagged files are used in the function evalua
to tagged file names after the function evaluation is complete (an
evaluation starts) in order to prevent overwriting files for which afile_
has been given.

Unix temporary files

If parameters_file  andresults_file  are not included in t
specification, then the default mechanisms for file communicatio
files (e.g.,/usr/tmp/aaaa08861 ). These files have unique nam
tmpnam utility from the C standard library ([Kernighan, B.W., and R
1988]). This uniqueness makes it a requirement for the user’s int
names of these files from the command line. File tagging is unne
temporary files (since they are already unique); thus,file_tag reque
file_save  requests will be honored, although this option is no
purpose of keeping the temporary file directory uncluttered.
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Common filtering operations

A mechanism has been constructed for the implementation of co
operations which are relatively application-independent. By prov
common I/O filtering operations, the work in developing filters fo
be minimized. Examples of common filtering operations include 
on the input filter side and filtering of noisy response time histori
side. These common filtering operations comprise a second leve
externally to the inner layer of application-specific filtering. This a
is encapsulated in theApplicationInterface  class and is currently in
placeholder for future extensions.

Examples

The NO_FILTER option

In a 1-piece interface (the NO_FILTER option), the user provide
executable that accepts two command-line arguments: a param
responses file name. This executable must read the parameters
appropriate data to the responses file. If a user creates a script/e
“my_analysis” (the name of theanalysis_driver ), selects “para
parameters_file  name and “results.out” as theresults_file
employs the defaults of no file saving and no file tagging, then s
following syntax will be spawned by Dakota:

(my_analysis params.in results.out)
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If file_tag  is requested, system calls like the following will be
(my_analysis params.in.1 results.out.1)

If UNIX temporary files are used (noparameters_file  or results
specification), system calls like the following will be used:

(my_analysis /usr/tmp/aaaa20305 /usr/tmp/baaa20305)

In the first of these three cases, the user need not retrieve the co
since the same file names will be employed each time. With the 
must retrieve the command line arguments since the file names c
In the case of a C-shell script, the two command line arguments
$argv[1]  and$argv[2]  (see[Anderson, G., and Anderson, P.,
of a C or C++ program, command line arguments are retrieved ua
count) andargv  (argument vector)[Kernighan, B.W., and Ritchie, 
Fortran 77 does not support command line arguments; in this ca
can be built around the Fortran program to handle unique file na
creating a tagged working directory for the Fortran simulation an
name to a hardwired file name within the working directory).

If file_save  is not set, a file remove notification will follow the 
Removing /usr/tmp/aaaa20305 and /usr/tmp/baaa20305

If nonunique file names are to be saved (file_save  is set without e
being set or UNIX temporary files being used), then these files w
them to tagged files after the evaluation is complete to prevent o
subsequent evaluations. In this case, the following notification is

Files with nonunique names will be tagged to enable file_save:
Moving params.in to params.in.1
Moving results.out to results.out.1
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The named filter option

In a 3-piece interface (the named filter option), the user chooses
and output filters that perform the data translations between Dak
program. The input filter translates a standard Dakota parameters
input file, the simulator runs and produces data, and then the ou
analysis code output file or database into a standard Dakota res
employing ananalysis_driver  named “my_analysis,” aninput_
“my_ifilter,” an output_filter  named “my_ofilter,” selects “pa
parameters_file  name and “results.out” as theresults_file
employs the defaults of no file saving and no file tagging, then s
following syntax will be spawned by Dakota:

(my_ifilter params.in; my_analysis; my_ofilter results.out)

If file_tag  is requested, system calls like the following will be
(my_ifilter params.in.1; my_analysis; my_ofilter results.out.1)

If UNIX temporary files are used (noparameters_file  or results
specification), system calls like the following will be used:

(my_ifilter /usr/tmp/aaaa22490; my_analysis; my_ofilter /usr/tmp/
baaa22490)

Similar to the 1-piece case, the user’s input and output filters mu
line arguments in the latter two of the three cases above since th
each evaluation. Identical to the 1-piece case, omitting thefile_save
the following action

Removing /usr/tmp/aaaa22490 and /usr/tmp/baaa22490

and use offile_save  with nonunique file names will result in ac
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Files with nonunique names will be tagged to enable file_save:
Moving params.in to params.in.1
Moving results.out to results.out.1

DAKOTA File Data Formats

The central purpose of simulation interfaces is the mapping of a
set of responses. DAKOTA uses its own format for this data input
which employfile transfer of data (i.e., the system call application
on the user’s interface specification, DAKOTA will write the param
standard or APREPRO format. The latter option simplifies mode
the APREPRO utility ([Sjaardema, G.D., 1992]). For the results file
supported.

Parameters file format (standard)

Prior to invoking an interface, DAKOTA creates a parameters file
current parameter values and a set of function requests. This pa
following standard format:
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Figure 20 Parameters file data format, standard option

where “<int> ” denotes an integer value, “<double> ” denotes a do
and “... ” indicates omitted lines for brevity. The first line specifie
variables (n) with its identifier string “variables” followed by the nu
with its identifier string “functions.” These integers are useful for 
allocation within a simulator or filter program. The nextn lines specif

Descriptive header

Continuous design va
(ncdv values and tags

Discrete design vars.
(nddv values and tags

Uncertain vars.

Continuous state vars
(ncsv values and tags)

Discrete state vars.
(ndsv values and tags)

Active set vector

(nuv values and tags)

(m values and tags)

<int> variables <int> functions

<double> <var_tag_cdv1>

<double> <var_tag_cdv2>

...

<double> <var_tag_cdvn>

<int> <var_tag_ddv1>

<int> <var_tag_ddv2>

...

<int> <var_tag_ddvn>

<double> <var_tag_uv1>

<double> <var_tag_uv2>

...

<double> <var_tag_uvn>

<double> <var_tag_csv1>

<double> <var_tag_csv2>

...

<double> <var_tag_csvn>

<int> <var_tag_dsv1>

<int> <var_tag_dsv2>

...

<int> <var_tag_dsvn>

<int> <asv_tag_1>

<int> <asv_tag_2>

...

<int> <asv_tag_m>
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and descriptors of all of the variables within the parameter set in
continuous design, discrete design, uncertain, continuous state,
variables. The lengths of these vectors add to a total ofn (that is,
ncdv +nddv +nuv+ncsv +ndsv =n). If any of the variable types are n

problem, then its block is omitted entirely from the parameters fi
those specified in the user’s Dakota input file, or if no descriptors
default descriptors are used. The nextm lines specify the request ve
functions in the response data set. These integer codes indicate
the current function evaluation. Integer values of 0 through 7 den
representation of all possible combinations of value, gradient, an
particular function, with the most significant bit denoting the Hes
denoting the gradient, and the least significant bit denoting the v
translations are shown inTable 8.

Table 8 Request vector codes

Integer
Code

Binary
representation

Meaning

7 111 Get Hessian, gradient, and value

6 110 Get Hessian and gradient

5 101 Get Hessian and value

4 100 Get Hessian

3 011 Get gradient and value

2 010 Get gradient

1 001 Get value
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This request vector accomplishes two operations: (1) it manages
that is needed, and (2) it implements the active set strategy by p
distinguishing between active and inactive functions.

Parameters file format (APREPRO)

For the APREPRO format option, the same data is present and 
as in the standard format. The difference is that numerical values
tags within$$ { tag = value }  constructs as shown in Figu

0 000 Get nothing, function is inactive

Table 8 Request vector codes

Integer
Code

Binary
representation

Meaning



DAK 130

S

D

In

S
In

 template file (using an
ts as variable definitions
late file.

r

 vars.
gs)

rs.
ags)

vars.
gs)

s.
ags)

gs)

s)
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Figure 21 Parameters file data format, APREPRO option

When a parameters file in APREPRO format is included within a
include directive), the APREPRO utility recognizes these construc
which can then be used to populate targets throughout the temp

Descriptive heade

Continuous design
(ncdv values and ta

Discrete design va
(nddv values and t

Uncertain vars.

Continuous state 
(ncsv values and ta

Discrete state var
(ndsv values and t

Active set vector

(nuv values and ta

(m values and tag

$$ { DAKOTA_VARS = <int> }
$$ { DAKOTA_FNS = <int> }
$$ { <var_tag_cdv1> = <double> }
$$ { <var_tag_cdv2> = <double> }
...
$$ { <var_tag_cdvn> = <double> }
$$ { <var_tag_ddv1> = <int> }
$$ { <var_tag_ddv2> = <int> }
...
$$ { <var_tag_ddvn> = <int> }
$$ { <var_tag_uv1> = <double> }
$$ { <var_tag_uv2> = <double> }
...
$$ { <var_tag_uvn> = <double> }
$$ { <var_tag_csv1> = <double> }
$$ { <var_tag_csv2> = <double> }
...
$$ { <var_tag_csvn> = <double> }
$$ { <var_tag_dsv1> = <int> }
$$ { <var_tag_dsv2> = <int> }
...
$$ { <var_tag_dsvn> = <int> }
$$ { ASV_1 = <int> }
$$ { ASV_2 = <int> }
...
$$ { ASV_M = <int> }
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Results file format

After completion of the interfacing processes, DAKOTA expects 
response data for the current set of parameters and correspond
requests. This data must be in the following format:

Figure 22 Results file data format

The first block of data is the function values that have been reque
of requested gradient data, followed by a block of requested Hes
have no bracket delimiters and 1 character tag per function can opti
These tags are not used by DAKOTA and are only included as a
consistency with the parameters file format and for backwards co
rendered optional through DAKOTA’s use of regular expression pa
whether an upcoming field is numerical data or a tag. If characte
must be separated from data by either white space or new line c
not be any white space within a character tag (e.g., use “variable

Requested func

Requested grad

Requested Hes

<double> <fn_tag_1>
<double> <fn_tag_2>
...
<double> <fn_tag_m>
[ <double> <double> ... <double> ]
[ <double> <double> ... <double> ]
...
[ <double> <double> ... <double> ]
[[ <double> <double> ... <double> ]]
[[ <double> <double> ... <double> ]]
...
[[ <double> <double> ... <double> ]]

values (optiona

vectors (no tag

matrices (no ta
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Function gradient vectors are delimited with single brackets [...ngrad -

doubles...]. Tags are not used and must not be present. White spa
from the data is optional.

Function Hessian matrices are delimited with double brackets [[.

of doubles...]]. Tags are not used and must not be present. Whit
brackets from the data is optional, although white space must no
double brackets.

DAKOTA will read the data in three passes, getting the set of req
first, followed by the requested set of gradients, followed by the re
If the amount of data in the file does not match the function reque
abort with a response recovery format error message.

An important question for proper management of both gradient a
several different types of variables are used,for which variables are f
needed? That is, how isngrad  determined? Derivatives are never n

any discrete variables (since these derivatives do not exist) and 
variables for which derivatives are needed depend on the type o
For optimization and least squares problems, function derivative
respect to thecontinuous design variables (ngrad =ncdv ) since this is

used by the optimizer in computing a search direction. Similarly,
analysis methods which use gradient and/or Hessian information
only needed with respect to theuncertain variables (ngrad =nuv ). And

study methods which are cataloguing gradient and/or Hessian in

ngra
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distinction among continuous variables; therefore, function deriv
with respect toall continuous variablesthat are specified (ngrad =ncdv

is generally not as complicated as it sounds, since it is common f
squares problems to only specify design variables and for nonde
problems to only specify uncertain variables. DAKOTA allows for
additional types of variables in these cases and DAKOTA will ma
variables through the interface, but since they will not be used in t
of the iterator, the derivatives of the function set with respect to the
not needed.

Active set vector control

A future capability will be the option to turn the ASV controlon  or of
dakota.input.spec  has a placeholder for this capability in th
section). ASV control set toon  is the default operation as describe
ASV control set tooff  will cause Dakota to always request a “ful
function, gradient, and Hessian data that is available in the prob
responses specification) on each function evaluation. This latter c
simplify the supplied interface by removing the need to check the
vector on each evaluation. Of course, this will be most appropria
which only a relatively small penalty in efficiency occurs when re
may be needed on a particular function evaluation. SeeActive Set Vec
Responses section of the Commands chapter for a more detaile
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Examples

Shown are several examples of parameters files and their corres

A typical input file for 2 variables (n = 2) and 3 functions (m = 3) is a
2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

1 ASV_1
1 ASV_2
1 ASV_3

The number of design variables (n) and the string “variables” are fol
of functions (m) and the string “functions”, the values of the desig
tags, and the active set vector (ASV) and its tags. The descriptive
always present and they are either the descriptors specified in the
are default descriptors if none were provided. The length of the ac
the number of functions (m). In the case of an optimization data se
function and two nonlinear constraints (three response functions
is associated with the objective function and the remaining two a
constraints (in whatever consistent order has been defined by th

For the APREPRO format option, the same set of data appears 
$$ { DAKOTA_VARS     = 2 }
$$ { DAKOTA_FNS      = 3 }
$$ { cdv_1           =  1.5000000000e+00 }
$$ { cdv_2           =  1.5000000000e+00 }
$$ { ASV_1           =                 1 }
$$ { ASV_2           =                 1 }
$$ { ASV_3           =                 1 }
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where the numerical values are associated with their tags within$${ ta
constructs.

The user-supplied application interface, comprised of a simulato
optionally - filter programs, is responsible for reading the parame
results file containing the response data requested in the ASV. S
ones in this case, the response file corresponding to the above i
values for the three functions:

1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2

Since function tags are optional, the following would be equally a
1.2500000000e-01
1.5000000000e+00
1.7500000000e+00

For the same parameters with different ASV components,
2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

3 ASV_1
3 ASV_2
3 ASV_3

the following response data is required:
1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2
[ 5.0000000000e-01 5.0000000000e-01 ]
[ 3.0000000000e+00 -5.0000000000e-01 ]
[ 0.0000000000e+00 3.0000000000e+00 ]
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Here, we need not only the function values, but also each of their
ASV components again gives the following parameters file,

2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

2 ASV_1
0 ASV_2
2 ASV_3

for which the following results file is needed:
[ 5.0000000000e-01 5.0000000000e-01 ]
[ 0.0000000000e+00 3.0000000000e+00 ]

Here, we needed gradients for functionsf  andc2 , but not forc1  pres
constraint is inactive.

A full Newton optimizer might well make the following request:
2 variables 1 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

7 ASV_1

for which the following results file (containing the objective funct
and its Hessian matrix) is needed:

1.2500000000e-01 f
[ 5.0000000000e-01 5.0000000000e-01 ]
[[ 3.0000000000e+00 0.0000000000e+00 0.0000000000e+00 3.0000000

Lastly, a more advanced example might have multiple types of v
11 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

2 ddv_1
2 ddv_2
2 ddv_3

3.5000000000e+00 csv_1
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3.5000000000e+00 csv_2
3.5000000000e+00 csv_3
3.5000000000e+00 csv_4

4 dsv_1
4 dsv_2
3 ASV_1
3 ASV_2
3 ASV_3

In this case, the required length of the gradient vectors depends
being performed. In an optimization problem, gradients are only
the continuous design variables, in which case the following resp
appropriate (ngrad =2):

1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2
[ 5.0000000000e-01 5.0000000000e-01 ]
[ 3.0000000000e+00 -5.0000000000e-01 ]
[ 0.0000000000e+00 3.0000000000e+00 ]

In a parameter study, however, no distinction is drawn between d
continuous variables and gradients would be needed with respe
variables (ngrad =6), e.g.:

1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2
[ 5.0000000000e-01 5.0000000000e-01 6.2500000000e+01 6.2500000000e

6.2500000000e+01 6.2500000000e+01 ]
[ 3.0000000000e+00 -5.0000000000e-01 0.0000000000e+00 0.0000000000

0.0000000000e+00 0.0000000000e+00 ]
[ 0.0000000000e+00 3.0000000000e+00 0.0000000000e+00 0.0000000000

0.0000000000e+00 0.0000000000e+00 ]
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Failure capturing

DAKOTA provides the capability to manage failures in simulation
system call and direct application interfaces. Failure capturing co
operations: failure detection, failure communication, and failure r

Failure detection

Since the symptoms of a simulation failure are highly code-depe
responsibility to detect failures within theiranalysis_driver or o
One popular example of simulation monitoring is to rely on a sim
detection of errors. In this case, the Unixgrep utility can be used wi
detect strings in output files which indicate analysis failure. For e
script excerpt

grep ERROR analysis.out > /dev/null
if ( $status == 0 )

echo “FAIL” > results.out
endif

will pass theif  test and communicate simulation failure to DAKO
command finds the stringERROR anywhere in theanalysis.out  fi

If the simulation code is not providing error diagnostic information
may require monitoring of simulation results for sanity (e.g., is th
excessively?) or potentially monitoring for continued process exi
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simulation segmentation fault or core dump. While this can get co
of DAKOTA’s interfaces allows for a wide variety of monitoring ap

Failure communication

Once a failure is detected, it must be communicated so that DAK
recover from the failure. The form of this communication depend
application interface in use.

System call application interfaces

In the system call application interface case, a detected simulati
communicated to DAKOTA through the results file returned by th
analysis_driver  (1-piece interface) oroutput_filter  (3-pie
Instead of returning the standard results file data, the string “FAIL ” or
appear at the beginning of the results file. Any data appearing a
be read.

Direct application interfaces

In the direct application interface case, a detected simulation fai
DAKOTA through the return code provided by the user’sanalysis_driv
the 1-piece or the 3-piece interface). Recall that the prototype fo
int function_name(const DakotaVariables& vars, const
DakotaIntArray& asv, DakotaResponse& response) . T
the failure code: 0 (false) if no failure occurs and 1 (true) if a failu
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Failure recovery

Once the analysis failure has been communicated, DAKOTA will
the failure using one of the following mechanisms, as governed 
specification. Additional details on these specifications are provi
Commands.

Abort

If the abort  option is specified, then DAKOTA will terminate upo
Note that if the problem causing the failure can be corrected, DAK
(seeRestart Management) can be used to continue the study.

Retry

If the retry  option is specified, then DAKOTA will reinvoke the f
the specified number of retries. If the simulation continues to fail
DAKOTA will terminate. The retry option is appropriate for those
simulation failures may be resulting from transient computing env
disk space.

Recover

If the recover  option is specified, then DAKOTA will not attemp
again. Rather, it will return a “dummy” set of function values as th
evaluation. The dummy function values to be returned are speci
gradient or Hessian data requested in the active set vector will b
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appropriate for those cases in which a failed simulation may ind
design space to be avoided and the dummy values can be used
function or a constraint violation which will discourage an optimi
investigating the region.

Continuation

If the continuation  option is specified, then DAKOTA will atte
the failing “target” simulation from a nearby “source” simulation t
continuation algorithm. This option is appropriate for those case
simulation may be caused by an inadequate initial guess. If the 
source and target can be divided into smaller steps in which info
provides an adequate initial guess for the next step, then the con
towards the target in increments sufficiently small to allow for co
simulations.

When the failure occurs, the interval between the last successfu
point) and the current target point is halved and the evaluation is
repeated until a successful evaluation occurs. The algorithm the
target point using the last interval as a step size. If a failure occu
forward, the interval will be halved again. Each invocation of the c
allowed a total of ten failures (ten halvings result in up to 1024 ev
target) prior to aborting the DAKOTA process.

While DAKOTA manages the interval halving and function evalua
user is responsible for managing the initial guess for the simulatio
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in GOMA ([Schunk, P.R., Sackinger, P.A., Rao, R.R., Chen, K.S.
1995]), the user specifies the files to be used for reading initial g
solution data. When using the last successful evaluation in the co
translation of initial guess data can be accomplished by simply c
file leftover from the last evaluation to the initial guess file for the
in fact this is useful for all evaluations, not just continuation). How
under development for use of theclosest, previously successful, fun
(rather than thelast successful evaluation) as the source point in t
algorithm. This will be especially important for nonlocal methods
algorithms) in which the last successful evaluation may not nece
of the current evaluation. This approach will require the user to s
previous solutions (likely tagged with evaluation number) so that
particular simulation (specified by DAKOTA after internal identific
point) can be used as the current simulation’s initial guess.
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The Approximation Interface

TheApproximationInterface  branch (seeFigure 18) implements a 
approximation techniques which can be used as surrogates in p
TheANN, RSM, andMARS approximation interfaces implement 
networks, response surface methods, and multivariate adaptive 
respectively. In addition, anMPA  approximation interface is planne
multipoint approximations. These approximations can be used o
interfacing with any iterator or as part of a sequential approxima
Sequential Approximate Optimization).

The primary goal in surrogate-based optimization is the reductio
expense through the minimization of the number of function eva
performed with the actual expensive model.

All of the approximation interfaces define methods for building a
(thebuild_approximation  virtual function), updating the app
data points (theupdate_approximation  virtual function), modi
extent of the approximation (themodify_approximation  virtual
performing a function evaluation using the approximation (themap vir

Building an approximation

Building an initial approximation consists of selecting a set of tria
trial function evaluations on the actual model, and then using the
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function evaluations to solve for the coefficients (e.g., polynomia
network weights) of the approximation. If there are multiple func
(e.g., an objective function plus one or more constraints), then a s
built for each function, although each approximation uses the res

trial points. Currently, only 0th-order information (function values) f
is used in building the approximation, although extensions to usi
information (function gradients and Hessians) are possible. In D
points is determined via the DDACE package ([Tong, C.H., and Mez
design and analysis of computer experiments. Solution for the a
is performed using either LU factorization or singular value deco

Updating an approximation

An approximation can be updated whenever new information is 
model. In sequential approximate optimization, for example, the
approximate optimization cycle is evaluated with the actual mod
is first used to assess performance and convergence of the proc
observed and the convergence criteria have not been satisfied, t
evaluation information is used to update the approximation for the
This will typically involve another factorization or decomposition 
approximation coefficients.
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Modifying an approximation

It is often desirable to modify the extent of an approximation bas
For example, if the approximation is performing poorly (as measu
the best point found in an approximate optimization cycle with the
desirable to restrict the extent (i.e., the bounds) of the approxima
approximation is performing well, then it may be desirable to inc
approximation so that larger changes can occur on each cycle. D
trust region concepts to manage the extent of approximations.

Performing function evaluations

Each of the approximation interfaces, like the application interfac
virtual map function in order to provide a mechanism for paramete
This is the function invoked when an iterator requests a function
function evaluation mechanisms for application and approximati
implemented within a single virtual function, the particular form o
hidden from the iterator and this complexity can be encapsulate

In the case of an approximation interface, a parameter to respon
inexpensive evaluation of the approximation for a particular para

approximations can return 0th-order information (approximate funct

approximations can directly return 1st-order information (approxima
in those cases where the approximate form is easily differentiate
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polynomial approximation). Availability of analytic gradients can 
and efficiency of performing a gradient-based optimization on th
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The RSM Approximation Interfac

The RSM Approximation Interface uses a response surface met
quadratic polynomial of the form:

Following evaluation of the DDACE sample points with the actua
approximation coefficients (c0, ci , cij ) are computed with an LU f

This capability is new and evolving. Additional details will be pro
documentation releases.

c 0 c i x i c ij x i x j
j 1=

n

∑
i 1=

n

∑+

i 1=

n

∑+
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The MARS Approximation Interf

The MARS Approximation Interface uses multivariate adaptive r
the MARS3.5 package ([Friedman, J. H., 1991]) developed at Stan
object-oriented interface to the Fortran library is provided by the D
C.H., and Meza, J.C., 1997]).

This capability is new and evolving. Additional details will be pro
documentation releases.
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The ANN Approximation Interfac

The ANN Approximation Interface uses a layered perceptron art
based on the direct training approach of Zimmerman ([Zimmerman, D
Following evaluation of the DDACE sample points with the actua
weights are computed with an SVD decomposition.

This capability is new and evolving. Additional details will be pro
documentation releases.
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Parallelism Introduction

The opportunities for exploiting parallelism in optimization can b
main areas:

1. Algorithmic coarse-grained parallelism: This parallelism involv
of multiple independent function evaluations. Examples of o
containing coarse-grained parallelism include:
a.)Gradient-based algorithms: finite difference gradient evalua
optimization, parallel line search, multiple-secant BFGS.
b.) Nongradient-based algorithms: genetic algorithms (GA’s), c
search (CPS), parallel direct search (PDS), Monte Carlo.
c.) Approximate methods: design and analysis of computer ex
evaluations for building response surfaces and training neur
d.) Multi-method strategies: optimization under uncertainty, br
multi-start local search, island-model GA’s, GA’s with period

2. Algorithmic fine-grained parallelism: This involves computing 
computational steps of an optimization algorithm (i.e., the in
parallel. This is primarily of interest in large-scale optimizati
simultaneous analysis and design (SAND).

3. Function evaluation coarse-grained parallelism: This involves s
computation of separable (i.e., uncoupled) parts of a single 
where a function evaluation may contain multiple response 
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multiple simulations. Examples include separate simulation
and constraint functions, multiple disciplinary analyses for M

4. Function evaluation fine-grained parallelism: This involves para
solution steps within a single analysis code. Examples of Sa
analysis codes include PRONTO3D, COYOTE, MPSalsa, A
SIERRA, etc.

In both the algorithmic and function evaluation cases, coarse-gra
requires very little inter-processor communication and is therefo
meaning that there is little loss in parallel efficiency due to comm
of processors increases (assuming that there are enough separ
the additional processors). Fine-grained parallelism, on the othe
more communication among processors and care must be taken
inefficient machine utilization in which the communication deman
outstrip the amount of actual computational work to be performe

Single-level approaches which exploit either algorithmic coarse-
function evaluation fine-grained parallelism have been investigat
([Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchin
Salinger, A.G., 1996]). It has been shown that optimization appro
single-level parallelism can have clear performance barriers. Pa
single-processor simulations is limited by the number of indepen
cycle, and sequential optimization of parallel analyses is limited 
processors that can be used for a single parallel simulation befo
communication dominates actual computational work. These obs
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the need for multilevel parallelism, in which parallel optimization
multiple simultaneous simulations of multiprocessor codes.

The question arises, then, if multiple types of parallelism can be e
amount of parallelism at each level be selected so as to maximize
the study? This question is answered in[Eldred, M.S., and Hart, W.E
is shown that maximum parallel efficiency is achieved in multilev
minimum number of processors is used for the fine-grained para
analysis (with the rare exception of a parallel analysis with supe
gives preference to the coarse-grained parallelism in multilevel p
maximum efficiency and minimum turn-around time are not equiv
is common to sacrifice efficiency for speed and increase the num
a given parallel analysis beyond the minimum required. For exam
10 independent function evaluations per cycle and each of these
needs a minimum of 50 processors to perform the simulation, the
can be achieved by dividing a total of 501 processors into ten 50
plus a master processor. This would be preferable to five 100-pr
far preferable to one 500-processor slave server. However, incre
processors and selecting 10 100-processor slave servers, while
parallel efficiency, might be desirable in practice in order to minim

The following discussions describe how to manage algorithmic co
and function evaluation fine-grained parallelism within the DAKO
remaining types (algorithmic fine-grained and function evaluation
parallelism) are not currently supported, although[Eldred, M.S., and
1999] describes recent progress in these directions. The softwar
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enable parallelism are discussed first, followed by descriptions o
these components in implementing parallelism within a variety of
specification and execution details are provided for running para
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Enabling Software Components

This section describes software components which enable para
forms. Direct function and system call interfacing capabilities ha
initiate function evaluations either synchronously or asynchronou
evaluations proceed one at a time with the evaluation running to c
is returned to DAKOTA. Asynchronous evaluations are initiated s
returned to DAKOTA immediately, prior to evaluation completion
initiation of multiple concurrent evaluations. The synchronization
by themselves to provide a simple parallelism which relies on ex
jobs to processors (seeSingle-processor DAKOTA implementation)
combined with DAKOTA’s master-slave algorithm to provide a so
contained parallelism (seeMultiprocessor DAKOTA implementation

Direct function synchronization

The direct function capability, described in detail inThe Direct Funct
Interface, is used to invoke simulation codes which are linked dire
executable or to invoke internal test functions for algorithm perfo
capability may be used synchronously or asynchronously:
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Synchronous

Synchronous operation of the direct function application interfac
procedure call to a simulation linked within the code. Control does
code until the simulation is completed and the response object h

Asynchronous

Asynchronous operation involves the use of multithreading (e.g.
accomplish multiple simultaneous simulations. When spawning 
to the calling code after the simulation is initiated. In this way, m
created simultaneously. An array of responses corresponding to
execution is recovered in a synchronize operation.

System call synchronization

The system call approach, described in detail inThe System Call App
invokes a simulation code or simulation driver by using thesystem  fu
standard library to create a new process. This capability may be
asynchronously:

Synchronous

Synchronous operation of the system call application interface in
system call in the foreground. Control does not return to the call
simulation is completed and the response file has been written. In
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of a race condition (see below) does not exist and any errors durin
cause an immediate abort of the DAKOTA process.

Asynchronous

Asynchronous operation involves spawning the system call in the
with other tasks (e.g., other simulation system calls), periodically
completion, and finally retrieving the results. An array of respons
multiple system calls is recovered in a synchronize operation.

In this synchronize operation, completion of a function evaluatio
for the existence of the evaluation’s results file using thestat  utility (
B.W., and Ritchie, D.M., 1988]). Care must be taken when using 
prone to the race condition in which the results file passes the e
recording of the function evaluation results in the file is incomple
operation performed by DAKOTA will result in an error due to this
order to address this problem, DAKOTA contains exception hand
fixed number of response read failures per asynchronous system
number of allowed failures must have a limit, so that an actual re
(unrelated to the race condition) will eventually abort the system.
possibility of exceeding the limit on allowable read failures,the user’s
minimize the amount of time an incomplete results file exists in t
status is being tested. This can be accomplished through two appr
creation of the results file until the simulation computations are c
response data is ready to be written to the results file, or (2) per
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computations in a subdirectory, and as a last step, move the com
main working directory where its existence is being queried.

If concurrent simulations are executing in a shared disk space, t
maintain independence of the concurrent analyses. In particular,
files for a simulation, as well as any other files used by the simu
from other files of the same name used by other concurrent sim
the parameters and results files, these files may be made uniqu
tagging or Unix temporary files (seeAdditional Features). However,
simulation files must be protected, then it will usually be necessa
subdirectory for each concurrent simulation. For example, if the 
simulator are the files from which it reads parameters and to wh
the simple test problems inExample Problems), then it is sufficient 
file_tag  option (params.in.1 , results.out.1 , etc.) or the
temporary file option (/var/tmp/aaa0b2Mfv , etc.) to maintain in
concurrent simulations. If, however, a simulator needs to use add
diagnostics, and results databases (e.g.,model.i , model.o , model.
etc., for many SEACAS codes), then one could extract DAKOTA
and use them to tag all the other files (assuming the simulator c
filenames), or preferably, create a tagged working directory in w
execute in default mode. An example of this preferred approach i
Tutorial .
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Master-slave algorithm

DAKOTA contains a master-slave algorithm which self-schedule
a “single program-multiple data” (SPMD) parallel programming m
message-passing ([Gropp, W., Lusk, E., and Skjellum, A., 1994], [S
Huss-Lederman, S., Walker, D., and Dongarra, J., 1996]) to comm
between processors. The self-scheduling design (also known as
provides a simple load balancing which is particularly useful in th
processor speeds or varying simulation durations. In the first pas
algorithm assigns each slave server a job. In the second pass, th
remaining jobs on slave servers as they complete their previous
return its results gets the next job. The SPMD designation simpl
DAKOTA executable is loaded on all processors. This differs from
(“multiple program-multiple data”) which would have the DAKOT
master processor communicating directly with simulator executa
The MPMD model has some advantages, but it is not currently a
executable loading software (i.e.,yod ) on Sandia’s MP machines.
Developer’s notes: Implementing the master-slave model within a single executable 
division of iterator code (master) from function evaluation code (slave). This is acc
the strategy layer. In the strategy constructor, the master processor instantiates the
whereas the slave processors instantiate only the required models. When the strat
executes the current iterator and sends analysis requests to the slaves which run s
model. When the master completes iteration on the current model, it sends a term
which then exit the current model. If additional work remains within the strategy, th
next iterator and model. Additional features include: (1) the use of buffer packing wh
heterogeneous set of data within a single message and thereby minimizes messag
ParallelLibrary class hierarchy which encapsulates the specific syntax of message
message passing libraries.
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Single-level parallelism

DAKOTA uses MPI communicators to identify groups of process
parallel case employing many single-processor slave servers, th
communicator (MPI_COMM_WORLD) can directly provide the conte
slave communication since processor rank withinMPI_COMM_WOR
message source and destination information. The other single-le
employing one multi-processor slave server is treated identically
case described below.

Multilevel parallelism

For multilevel parallelism,MPI_COMM_WORLD can be partitioned in
communicators which delineate the set of processors to be used
analysis. Since these intra-communicators can be passed into a
simulation’s computational context, the use of communicators en
routines to be provided as a generic library utility that can be run
processors (which was one of the goals of the MPI standard). Wit
communicators are created with theMPI_Comm_split  routine. In o
to send messages to the new intra-communicators, inter-commu
calls toMPI_Intercomm_create . Once the new communicator
single-level and multilevel algorithms for scheduling jobs from th
identical (in fact, the single-level case could be handled as a spe
case, but the DAKOTA design opted to maintain separate logic a
additional communicator creations for the single-level case). In a
partitions can be reallocated multiple times. This enables dynam
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MPI_COMM_WORLDfor each simulation interface within a strategy
models (e.g., four 256 processor servers could be used for a coar
512 processor servers for subsequent iteration on a fine model)
managed by allocating and deallocating particular communicato
within the iterator/model loops of the strategy layer.

Pending Extensions

Recent work has focused on the development of concurrent-iter
concurrent-analysis function evaluations (refer to[Eldred, M.S., and 
1999]) for exploiting additional coarse-grained parallelism within 
These extensions result in a total of three nested tiers of master
levels of parallelism which can minimize efficiency losses and ac
on massively parallel computers. These capabilities will be avail
V1.2 release and will allow the convenient selection and combin
parallelism a particular application supports:

• Concurrent iterators within a strategy

• Concurrent function evaluations within an iterator

• Concurrent analyses within a function evaluation

• Multiprocessor analyses
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Implementation of Parallelism

This section describes how the software components which ena
configured to perform particular parallel studies. An essential fea
variety of parallel processing scenarios is the independence of tMas
algorithm  from the interfacing software described inDirect function 
andSystem call synchronization. Since they are independent, the
utilize any of the available interfacing capabilities, or alternatively
interfacing capabilities can be employed with or without the mas

The approaches to exploiting parallelism which this flexibility allo
into two main areas: those in which DAKOTA runs on a single pr
external means to distribute simulations to remote processors (t
is notused), and those in which DAKOTA runs in parallel coordina
its allocation of processors (the master-slave approachis used).

Single-processor DAKOTA implementation

The asynchronous mappings described inDirect function synchroniz
call synchronizationcan be used to accomplish coarse-grained pa
DAKOTA process is running on a single processor. In this case, th
is not used and jobs are not assigned with MPI message-passin
additional mechanism external to DAKOTA will usually be desire
asynchronous jobs among processors, since multitasking on a sin
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slower than running the jobs sequentially. For the asynchronous
load leveling software (e.g., load leveler, load sharing facility, or 
software) or compute server job queues can provide this mecha
asynchronous direct function case, thread schedulers can be us
within an SMP architecture).

To accomplish multilevel parallelism in this context, one could us
asynchronous system call interface to submit multiple multiproces
a parallel compute server. Unfortunately, loading the queues wit
generally forbidden in the usage rules of Sandia’s MP machines
concurrent jobs will suffer a delay while it percolates through the
optimization performing evaluations in this way suffers repeated
cycle (as opposed to a single queue delay in other approaches)
specialized queues which allow multiple jobs per user and which
delays can be created and balanced with competing concerns, t
viable avenue to multilevel parallelism.

An alternative approach is to allocate a large number of compute
script which runs on a service node and manages concurrent m
partitions of the total allocation. This is in fact mimicking the com
capabilities of MPI within sophisticated scripting. While this has 
simplifying the automation of pre- and post-processing (since ser
and minimizing analysis code modifications (since the analysis d
modified to a callable subroutine), it has the disadvantages that (1
the job submission software of a particular parallel machine and
particularly flexible or extensible, and (2) DAKOTA is disconnect
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evaluations. This disconnection is due to the fact that DAKOTA a
launched separately, and information normally passed to the sim
during simulation invocation (e.g., where to obtain the paramete
results) must be mimicked by the server script. DAKOTA’s only c
simulations in this case comes through the creation of paramete
completed results files. While this procedure has been successf
single multiprocessor simulation, concurrent multiprocessor sim
additional complication that the server script must correctly track
(which are not a simple increasing sequence is the presence of 
order to associate the proper tagged files from DAKOTA with the

The final option for multilevel parallelism is to use the multiproce
implementation (described in the following section) and manage
evaluations internally. While elegant and general-purpose, it also
required modification to analysis codes. Each of these three opt
investigation, and it is expected that future releases of the softwa
able to recommend the most fruitful of these approaches.

Multiprocessor DAKOTA implementation

When executing DAKOTA in multiprocessor mode using theMaster-s
synchronous and asynchronous operations of the direct function
simulation interfacing classes are issues that are local to a proce
these local interfacing capabilities is the software which manage
assignment of work among processors. This design allows flexib
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evaluation mechanisms independently from the particular form o
passing model. For example, within the global context of a mast
which the master isasynchronously assigning jobs and retrieving re
passing with slave servers, the slave servers locally execute the
synchronousdirect function or system call protocols. This is due to
master-slave algorithm is managing the parallelism and schedul
server, there is nothing to be gained in performing the job async
However, if new approaches or architectures become available w
additional parallelism at the slave server level (e.g., message-pa
SMP’s with multiple asynchronous jobs on each SMP), then the 
function and system call capabilities could be employed to realiz
parallelism.

In the single-level parallel case of single-processor analyses, eit
direct function interfacing approaches can be used. The system
popular on clusters of workstations since the analysis can be use
the user can employ a simple driver script to coordinate any com
processing tools associated with an analysis. Applications can b
easily in this way.

For multiprocessor analyses, the system call interfacing approac
is not possible to share an MPI communicator (which provides th
for the multiprocessor analysis) between processes spawned wit
processors. Therefore, the direct function interfacing approach m
employing multiprocessor analyses within multiprocessor DAKOT
communicator can be passed in through the procedure call for all
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server - seeMultilevel parallelism  for additional MPI details). The 
the restriction to the direct function interface is the requirement to
a callable subroutine and link it into the executable (seeThe Direct Fu
Application Interface ). However,it may be feasible to remove this
through use of MPMD (“Multiple Program, Multiple Data”) execu
dynamic process creation with the emerging MPI-2 standard (se[Eldr
Hart, W.E., 1998] for additional details).
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Specifying Parallelism

In specifying parallelism with DAKOTA, the “model” encompasse
supported in the problem (in particular, the interface specificatio
parallelism). Then, depending on the “iterator” selected, the ava
multiple processors, asynchronous interfaces) will be automatica
ways. This design is known asimplicit parallelism, in that the use of
iterator is implicit: the methods recognize the available parallelis
need for specification of special parallelized methods.

The Model

Specifying parallelism within a model can involve the use of theasyn
evaluation_servers , andprocessors_per_evaluation  
described inInterface Commands.

When using DAKOTA on a single-processor and relying on exter
jobs to processors (seeSingle-processor DAKOTA implementation)
asynchronous interface specification is all that is required to sp
asynchronous system calls or asynchronous direct invocations w

When executing DAKOTA across multiple processors and mana
internally (seeMultiprocessor DAKOTA implementation ), DAKOTA
detects the presence of multiple processors and will, by default,async
jobs among slave processors while executing the jobs on the sla
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synchronous invocations. If the function evaluations are to be perf
processors (multilevel parallelism), thenevaluation_servers  or
processors_per_evaluation  must be specified to define ho
allocation will be partitioned into function evaluation servers for a
interface.
Note: asynchronous execution on the slave processors may be supported in the fu
triggered by theasynchronous interface specification. However, using this specific
is not supported in the current release.

The Iterator

As mentioned previously, iterators automatically detect the paral
model and exploit it as appropriate within the iteration. Currently
exploit available parallelism are:

• SGOPT optimizers - the genetic algorithm, coordinate pattern
stratified Monte Carlo methods within SGOPT.

• Parameter studies - DAKOTA’svector , list , centered , andm
parameter studies.

• Gradient-based optimizers - NPSOL, DOT, and OPT++ can al
through the use of DAKOTA’s native finite differencing routine 
method_source dakota  in the responses specification) wh
concurrent evaluations whenever the model supports them.

• Speculative optimization - NPSOL, DOT, and OPT++ can spe
information associated with a given line search point will be use
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gradient information, either by finite difference or analytically, 
time as the function values. This option is selected with thespeculat
the method specification and is used to balance the total amo
performed at each design point (allowing efficient utilization of

Single-processor DAKOTA specification

Specifying a single-processor DAKOTA job (which exploits paral
asynchronous calls to external job schedulers) requires inclusionas
the interface specification. For example, the following specificati
optimization which will perform asynchronous finite differencing:

interface,                                              \
        application system,                             \
          asynchronous                                  \
          analysis_driver=  ’qsub_script’

variables,                                              \
        continuous_design = 5                           \
          cdv_initial_point     0.2  0.05 0.08 0.2  0.2 \
          cdv_lower_bounds      0.15 0.02 0.05 0.1  0.1 \
          cdv_upper_bounds      1.0  1.0  1.0  1.0  1.0 \
          cdv_descriptor        ’x1’ ’x2’ ’x3’ ’x4’ ’x5’

responses,                                              \
        num_objective_functions = 1                     \
        num_nonlinear_constraints = 2                   \
        numerical_gradients                             \
          interval_type central                         \
          method_source dakota                          \
          fd_step_size = 1.0E-4                         \
        no_hessians

method,                                                 \
        npsol_sqp
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Note thatmethod_source dakota  is needed to invoke DAKOT
differencing routine in order to exploit the parallelism. In this cas
evaluations (one at the current point plus two deltas in each of fi
performed simultaneously for each NPSOL response request. Th
launched with system calls in the background and presumably a
processors through submission to a queue or similar approach.

Multiprocessor DAKOTA specification

Since the presence of multiple processors within the MPI context
(whenever DAKOTA is launched in parallel withmpirun  or yod ), th
specify for the multiprocessor DAKOTA case. To run the same NP
master-slave approach,asynchronous  would be removed from th
specification (since the slave servers execute their evaluations sy
in Multiprocessor DAKOTA implementation ):

interface,                                              \
        application system,                             \
          analysis_driver=  ’qsub_script’

This will result in concurrent execution of single-processor evalu
self-scheduling master-slave algorithm.

If multilevel parallelism is being used, thenevaluation_servers
processors_per_evaluation  must additionally be specified
processor partitioning to be used for a particular interface. In a m
hybrid strategy which employs multilevel parallelism and which r
processor partitioning for varying model fidelity can be specified
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strategy,                                               \
        multi_level uncoupled                           \
        method_list = ’VPS’, ’NLP’

variables,                                              \
        continuous_design = 4                           \
          cdv_initial_point       1.0 1.0 1.0 1.0

method,                                                 \
        vector_parameter_study                          \
          id_method = ’VPS’                             \
          step_vector = -.1 -.1 -.1 -.1                 \
          num_steps = 20                                \
          interface_pointer = ’COARSE’                  \
          responses_pointer = ’NO_GRAD’

interface,                                              \
        application direct,                             \
          id_interface = ’COARSE’                       \
          analysis_driver = ’sim1’                      \
          processors_per_evaluation = 5

responses,                                              \
        id_responses = ’NO_GRAD’                        \
        num_objective_functions = 1                     \
        num_nonlinear_constraints = 2                   \
        no_gradients                                    \
        no_hessians

method,                                                 \
        npsol_sqp                                       \
          id_method = ’NLP’                             \
          interface_pointer = ’FINE’                    \
          responses_pointer = ’FD_GRAD’

interface,                                              \
        application direct,                             \
          id_interface = ’FINE’                         \
          analysis_driver = ’sim2’                      \
          processors_per_evaluation = 10
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responses,                                              \
        id_responses = ’FD_GRAD’                        \
        num_objective_functions = 1                     \
        num_nonlinear_constraints = 2                   \
        numerical_gradients                             \
          interval_type central                         \
          method_source dakota                          \
          fd_step_size = 1.0E-4                         \
        no_hessians

If DAKOTA is executed on 40 processors (usingmpirun  or yod ), the
first run a parameter study using a coarse model in which evalua
through 8 servers of 5 processors each. The study will then pass
NPSOL which will perform parallel finite differencing (as in the p
fine model using 4 servers of 10 processors each. Note that, for
case, thedirect  application interface must be used for both inte
Multiprocessor DAKOTA implementation ).
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Running a parallel DAKOTA job

Single-processor DAKOTA execution

Running a single-processor DAKOTA job (which exploits paralle
asynchronous calls to external job schedulers) is identical to the
Running DAKOTA , e.g.:

dakota -i dakota.in > dakota.out

Multiprocessor DAKOTA execution

Running a multiprocessor DAKOTA job (which internally exploits
the use of an executable loading facility such asmpirun  or yod .

On clusters of workstations, thempirun script is used to initiate a p
e.g.:

mpirun -np 12 dakota -i dakota.in > dakota.out
mpirun -machinefile machines -np 12 dakota -i dakota.in > dakota.out

where both examples specify the use of 12 processors, the form
default system resources file and the latter specifying particular m
(see[Gropp, W., and Lusk, E., 1996] for details).

On a massively parallel computer such as the TeraFLOPS mach
available from the Cougar operating system:

yod -sz 501 dakota -i dakota.in > dakota.out
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In both thempirun  andyod  cases, MPI command line argument
(extracted in the call toMPI_Init ) and DAKOTA command line a
DAKOTA (extracted by DAKOTA’s command line handler).

Caveats

MPI extracts its command line arguments first which can be prob
path specifications (e.g., “../some_filename ”) have been obser
problems, both for multiprocessor executions withmpirun  and for s
executions of an executable configured with MPI (sinceMPI_Init  is
case). These path problems can be most easily resolved by usin
softlinks to the files appear in the same directory), which will likely
run script in a future software release.
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Overview

In the DAKOTA system, astrategy governs how eachmethod mapsva
responses through the use of aninterface. Each of these five pieces st
variables, responses, andinterface) are separate specifications in th
as a whole, determine the study to be performed during an exec
software. The number of strategies which can be invoked during
limited to one. This strategy, however, may invoke multiple meth
method may (in general) have its own “model,” consisting of its o
own set of responses, and its own interface. Thus, there may be
themethod, variables, responses, andinterface sections.

The syntax of DAKOTA specification is governed by the Input Dec
system[Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E
thedakota.input.spec file to describe the allowable inputs to
specification file provides a template of the allowable system inp
particular input file (referred to herein as adakota.in  file) can be 
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IDR Input Specification File

DAKOTA input is governed by the IDR input specification file. Th
(dakota.input.spec ) is used in the generation of parsing sys
compiled into the DAKOTA executable. Therefore,dakota.input.spec
definitive source for input syntax, capability options, and optional 
sub-parameters. Beginning users may find this file more confusin
case, adaptation of example input files to a particular problem m
approach. However, advanced users can master all of the variou
possibilities once the structure of the input specification file is un
include:

1. In the input specification, required parameters are enclosed
parameters are enclosed in []’s, required groups are enclos
are enclosed in []’s, and either-or relationships are denoted 
symbols only appear indakota.input.spec ; they must not
user input files.

2. Keyword specifications (i.e., strategy, method, variables, int
are delimited by newline characters. Therefore, to continue 
onto multiple lines, the back-slash character (“\”) is needed 
These newline escapes appear both in the input specificatio

3. Each of the five keyword specifications begins with a
<KEYWORD = name>, <FUNCTION = handler_nam
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header which names the keyword and provides the binding 
within DAKOTA’s problem description database. In an actua
name of the keyword appears (e.g.,variables ).

4. Some of the specifications within a keyword indicate that th
<INTEGER>, <REAL>, <STRING> or <LISTof><INTEGER>
<LISTof><REAL> , <LISTof><STRING>  data as part of th
actual input file, the “=” is optional,<LISTof>  data can be se
or whitespace, and<STRING> data are enclosed in single qu
‘text_book’ ).

5. Input is order-independent (except for entries in data lists) a
insensitive. Although the order of input shown in theSample da
generally follows the order of options in the input specificati

6. Specifications may be abbreviated so long as the abbreviat
example, theapplication  specification within the interface
abbreviated asapplic , but should not be abbreviated asapp  sin
ambiguous withapproximation .

7. Comments are preceded by #.

Thedakota.input.spec  file used in DAKOTA V1.1 is:

<KEYWORD = variables>, <FUNCTION = variables_kwhandler>
[id_variables = <STRING>]
[ {continuous_design = <INTEGER>}

[cdv_initial_point = <LISTof><REAL>]
[cdv_lower_bounds = <LISTof><REAL>]
[cdv_upper_bounds = <LISTof><REAL>]
[cdv_descriptor = <LISTof><STRING>] ]
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[ {discrete_design = <INTEGER>}

[ddv_initial_point = <LISTof><INTEGER>]
[ddv_lower_bounds = <LISTof><INTEGER>]
[ddv_upper_bounds = <LISTof><INTEGER>]
[ddv_descriptor = <LISTof><STRING>] ]

[ {uncertain = <INTEGER>}
[uv_descriptor = <LISTof><STRING>]
{uv_distribution_type = <LISTof><STRING>}
[uv_means = <LISTof><REAL>]
[uv_std_deviations = <LISTof><REAL>]
[uv_lower_bounds = <LISTof><REAL>]
[uv_upper_bounds = <LISTof><REAL>]
[uv_filenames = <LISTof><STRING>] ]

[ {continuous_state = <INTEGER>}
{csv_initial_state = <LISTof><REAL>}
[csv_descriptor = <LISTof><STRING>] ]

[ {discrete_state = <INTEGER>}
{dsv_initial_state = <LISTof><INTEGER>}
[dsv_descriptor = <LISTof><STRING>] ]

<KEYWORD = responses>, <FUNCTION = responses_kwhandler>
[id_responses = <STRING>]
[ {active_set_vector}  {on} | {off} ] \
( {num_objective_functions = <INTEGER>}
  [num_nonlinear_constraints = <INTEGER>] )
|
{num_least_squares_terms = <INTEGER>}
|
{num_response_functions = <INTEGER>}
{no_gradients}
|
( {numerical_gradients}

[ {method_source} {dakota} | {vendor} ]
[ {interval_type} {forward} | {central} ] \
[fd_step_size = <REAL>] )

|
{analytic_gradients}
|
( {mixed_gradients}

{id_numerical = <LISTof><INTEGER>}
  [ {method_source} {dakota} | {vendor} ] \
  [ {interval_type} {forward} | {central} ] \
  [fd_step_size = <REAL>]
{id_analytic = <LISTof><INTEGER>} )

{no_hessians}
|
{analytic_hessians}
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<KEYWORD = interface>, <FUNCTION = interface_kwhandler>

[id_interface = <STRING>]
( {application}

( {analysis_driver = <STRING>}
  [input_filter = <STRING>]
  [output_filter = <STRING>] )
|
( {concurrent_drivers = <LISTof><STRING>}
  [pre_driver = <STRING>]
  [post_driver = <STRING>] )
( {system} [asynchronous]
  [parameters_file = <STRING>]
  [results_file = <STRING>]
  [analysis_usage = <STRING>]
  [aprepro]
  [file_tag]
  [file_save] )
|
( {direct} [asynchronous]
  [evaluation_servers = <INTEGER>]
  [processors_per_evaluation = <INTEGER>] )
[ {failure_capture} {abort} | {retry = <INTEGER>} | \
  {recover = <LISTof><REAL>} | {continuation} ] ) \

|
( {approximation}

{neural_network} | {response_surface} |
                {multi_point}    | {mars_surface} ) \

|
{test = <STRING>}

<KEYWORD = strategy>, <FUNCTION = strategy_kwhandler>
( {multi_level}
    ( {uncoupled}

[ {adaptive} {progress_threshold = <REAL>} ]
{method_list = <LISTof><STRING>} )

    |
    ( {coupled}

{global_method = <STRING>}
{local_method = <STRING>}
[local_search_probability = <REAL>] ) )

|
( {seq_approximate_opt}

{opt_method = <STRING>}
{approximate_interface = <STRING>}
{actual_interface = <STRING>} )

|
( {opt_under_uncertainty}

{opt_method = <STRING>}
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{nond_method = <STRING>} )

|
( {branch_and_bound}

{opt_method = <STRING>}
{iterator_servers = <INTEGER>} )

|
( {single_method}

[method_pointer = <STRING>] )

<KEYWORD = method>, <FUNCTION = method_kwhandler>
[id_method = <STRING>]
[interface_pointer = <STRING>]
[variables_pointer= <STRING>]
[responses_pointer = <STRING>]
[speculative]
[ {output} {verbose} | {quiet} ]
[linear_constraints = <LISTof><REAL>]
[max_iterations = <INTEGER>]
[max_function_evaluations = <INTEGER>]
[constraint_tolerance = <REAL>]
[convergence_tolerance = <REAL>]
( {dot_frcg}

[ {optimization_type} {minimize} | {maximize} ] ) \
|
( {dot_mmfd}

[ {optimization_type} {minimize} | {maximize} ] ) \
|
( {dot_bfgs}

[ {optimization_type} {minimize} | {maximize} ] ) \
|
( {dot_slp}

[ {optimization_type} {minimize} | {maximize} ] ) \
|
( {dot_sqp}

[ {optimization_type} {minimize} | {maximize} ] ) \
|
( {npsol_sqp}

[verify_level = <INTEGER>]
[function_precision = <REAL>]
[linesearch_tolerance = <REAL>] )

|
( {optpp_cg}

[max_step = <REAL>]
[gradient_tolerance = <REAL>] )

|
( {optpp_q_newton}

[ {search_method} {value_based_line_search} |
  {gradient_based_line_search} | {trust_region} ] \
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[max_step = <REAL>]
[gradient_tolerance = <REAL>] )

|
( {optpp_g_newton}

[ {search_method} {value_based_line_search} |
  {gradient_based_line_search} | {trust_region} ] \
[max_step = <REAL>]
[gradient_tolerance = <REAL>] )

|
( {optpp_newton}

[ {search_method} {value_based_line_search} |
  {gradient_based_line_search} | {trust_region} ] \
[max_step = <REAL>]
[gradient_tolerance = <REAL>] )

|
( {optpp_fd_newton}

[ {search_method} {value_based_line_search} |
  {gradient_based_line_search} | {trust_region} ] \
[max_step = <REAL>]
[gradient_tolerance = <REAL>] )

|
( {optpp_baq_newton}

[gradient_tolerance = <REAL>] )
|
( {optpp_ba_newton}

[gradient_tolerance = <REAL>] )
|
( {optpp_bcq_newton}

[ {search_method} {value_based_line_search} |
  {gradient_based_line_search} | {trust_region} ] \
[max_step = <REAL>]
[gradient_tolerance = <REAL>] )

|
( {optpp_bcg_newton}

[ {search_method} {value_based_line_search} |
  {gradient_based_line_search} | {trust_region} ] \
[max_step = <REAL>]
[gradient_tolerance = <REAL>] )

|
( {optpp_bc_newton}

[ {search_method} {value_based_line_search} |
  {gradient_based_line_search} | {trust_region} ] \
[max_step = <REAL>]
[gradient_tolerance = <REAL>] )

|
( {optpp_bc_ellipsoid}

[initial_radius = <REAL>]
[gradient_tolerance = <REAL>] )
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|
( {optpp_pds}

[search_scheme_size = <INTEGER>] )
|
{optpp_test_new}
|
( {sgopt_pga_real}

[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[seed = <INTEGER>]
[population_size = <INTEGER>]
[ {selection_pressure} {rank = <REAL>} |
  {proportional} ]
[ {replacement_type} {random = <INTEGER>} |
  {CHC = <INTEGER>} | {elitist = <INTEGER>}
  [new_solutions_generated = <INTEGER>] ]
[ {crossover_type} {two_point} | {mid_point} | \
  {blend} | {uniform}
  [crossover_rate = <REAL>] ]
[ {mutation_type} ( {normal} [std_deviation = <REAL>] ) \
                  | {interval} | {cauchy} \
  [dimension_rate = <REAL>]
  [population_rate = <REAL>] ] )

|
( {sgopt_pga_int}

[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[seed = <INTEGER>]
[population_size = <INTEGER>]
[ {selection_pressure} {rank = <REAL>} |
  {proportional} ]
[ {replacement_type} {random = <INTEGER>} |
  {CHC = <INTEGER>} | {elitist = <INTEGER>}
  [new_solutions_generated = <INTEGER>] ]
[ {crossover_type} {two_point} | {uniform} \
  [crossover_rate = <REAL>] ]
[ {mutation_type} {offset} | {interval} \
  [dimension_rate = <REAL>]
  [population_rate = <REAL>] ] )

|
( {sgopt_coord_ps}

[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[ {expansion_policy} {unlimited} | {once} ] \
[expand_after_success = <INTEGER>]
[expansion_exponent = <INTEGER>]
[contraction_exponent = <INTEGER>]
{initial_delta = <REAL>}
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{threshold_delta = <REAL>}
[ {exploratory_moves} {standard} | {offset} | \
  {best_first} | {biased_best_first} ] ) \

|
( {sgopt_coord_sps}

[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[seed = <INTEGER>]
[ {expansion_policy} {unlimited} | {once} ] \
[expand_after_success = <INTEGER>]
[expansion_exponent = <INTEGER>]
[contraction_exponent = <INTEGER>]
{initial_delta = <REAL>}
{threshold_delta = <REAL>}
[ {exploratory_moves} {standard} | {offset} | \
  {best_first} | {biased_best_first} ] ) \

|
( {sgopt_solis_wets}

[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[seed = <INTEGER>]
[expand_after_success = <INTEGER>]
[contract_after_failure = <INTEGER>]
[initial_rho = <REAL>]
[threshold_rho = <REAL>] )

|
( {sgopt_strat_mc}

[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[seed = <INTEGER>]
[partitions = <LISTof><INTEGER>] )

|
( {nond_probability}

{observations = <INTEGER>}
[seed = <INTEGER>]
{sample_type} {random} | {lhs}
{response_thresholds = <LISTof><REAL>} )

|
( {nond_mean_value}

{response_filenames = <LISTof><STRING>} )
|
( {vector_parameter_study}

( {final_point = <LISTof><REAL>}
  {step_length = <REAL>} | {num_steps = <INTEGER>} )
|
( {step_vector = <LISTof><REAL>}
  {num_steps = <INTEGER>} ) )

|
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( {list_parameter_study}

{list_of_points = <LISTof><REAL>} )
|
( {centered_parameter_study}

{percent_delta = <REAL>}
{deltas_per_variable = <INTEGER>} )

|
( {multidim_parameter_study}

{partitions = <LISTof><INTEGER>} )

In the variables keyword, the main structure is that of the five optio
for continuous design, discrete design, uncertain, continuous sta
variables. Each of these specifications can either appear or not 
the responses keyword, the primary structure is the required spe
set (either an optimization function set OR a least squares funct
function set must appear), followed by the required specification
none OR numerical OR analytic OR mixed must be specified) fo
specification of the Hessians (either none OR analytic must be s
interface keyword requires the selection of either an application O
a test interface. Within the application block, the type must be sp
system OR the direct required group specification. The strategy 
simple, requiring either a multilevel OR a sequential approximate
optimization under uncertainty OR a branch and bound OR a sin
specification. Within the multilevel group specification, either an u
group specification must be supplied. Lastly, the method keywor
specification; however, its structure is relatively simple. The struc
sequence of optional method-independent settings followed by a
methods appearing as required group specifications (containing
dependent settings) separated by OR’s. Refer toVariables Command
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Commands, Interface Commands, Strategy Commands, andMeth
detailed information on the keywords and their various optional a
specifications. And for additional details on IDR specification log
[Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E., 199.

Common Specification Mistakes

Spelling and omission of required parameters are the most com
errors include:

1. Documentation of new capability can lag the use of new cap
When parsing errors occur which the documentation cannot
particular input specification used in building the executable
errors.

2. Since keywords are terminated with the newline character, 
avoid following the backslash character with any white spac
character will not be properly escaped, resulting in parsing 
truncation of the keyword specification.

3. Care must be taken to include newline escapes when embe
keyword specification. That is, newline characters will signa
specification even if they are part of a comment line. For ex
specification will be truncated because the embedded comm
the newline:

# No error here: newline need not be escaped since comment is not embedded
responses,                                      \
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        num_objective_functions = 1             \
# Error here: this comment must escape the newline
        analytic_gradients                      \
        no_hessians

In most cases, the IDR system provides helpful error messages 
isolate the source of the parsing problem.



DAK n Files 189

D
C

S

D

In

C
In

.input.spec
 DAKOTA system.

n of theTextbook
s available in the test
es are included in
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Sample dakota.i

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version

Sample dakota.in Files

A DAKOTA input file is a collection of the fields allowed in thedakota
specification file which describe the problem to be solved by the
Several examples follow.

Sample 1: Optimization

The following sample input file shows single-method optimizatio
Example using DOT’s modified method of feasible directions. It i
directory asDakota/test/dakota_textbook.in . Helpful not
this sample input file as comments.

# DAKOTA INPUT FILE - dakota_textbook.in
# NOTES: Specifications are delimited by newline characters. Therefore, to
#        continue a specification onto multiple lines, the back-slash character
#        is needed to escape the newline. Input is order-independent and
#        white-space insensitive. Keywords may be abbreviated so long as the
#        abbreviation is unique. Comments are preceded by #. Helpful NOTES
#        precede each section specification; however, the definitive resources
#        for input grammar are Dakota/src/dakota.input.spec and the Commands
#        chapter of the User’s Instructions manual.

# Interface section specification
# NOTES: Interfaces are 1 of 3 main types: application interfaces are used for
#        interfacing with simulation codes, approximation interfaces use
#        inexpensive design space approximations in place of expensive
#        simulations, and test interfaces use linked-in test functions for
#        algorithm testing purposes (to eliminate system call overhead).
#        Application interfaces can be further categorized into system and
#        direct types. The system type uses system calls to invoke the
#        simulation, while the direct type uses the same constructs as the test
#        interface for linked-in simulation codes.  Both application interface
#        types use analysis_driver, input_filter, and output_filter
#        specifications. The system type additionally uses parameters_file,
#        results_file, analysis_usage, aprepro, file_tag, and file_save
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#        specifications. The analysis_driver provides the name of the analysis
#        executable, driver script, or linked module; the input_filter and
#        output_filter provide pre- and post-processing for the analysis in the
#        procedure of mapping parameters into responses (default = NO_FILTER);
#        the parameters_file and results_file are data files which Dakota
#        creates and reads, respectively, in the system call case (default =
#        Unix temp files); analysis_usage defines nontrivial command syntax
#        (default = standard syntax); aprepro controls the format of the
#        parameters file for usage with the APREPRO utility; file_tag controls
#        the unique tagging of data files with function evaluation number
#        (default = no tagging); and file_save controls whether or not file
#        cleanup operations are performed (default = data files are removed
#        when no longer in use). Most settings are optional with meaningful
#        defaults as shown above. Refer to the Interface Commands section in
#        the User’s Instructions manual for additional information.
interface,

application system,
  input_filter    =       ‘NO_FILTER’ \
  output_filter   =       ‘NO_FILTER’ \
  analysis_driver =       ‘text_book’ \
  parameters_file =       ‘text_book.in’ \
  results_file    =       ‘text_book.out’ \
  analysis_usage  =       ‘DEFAULT’
  file_tag
  file_save

# Variables specification
# NOTES: A variables set can contain design, uncertain, and state variables
#        for continuous, discrete, or mixed variable problem domains.
#        Design variables are those variables which an optimizer adjusts in
#        order to locate an optimal design.  Each of the design parameters
#        can have an initial point, a lower bound, an upper bound, and a
#        descriptive tag.  Uncertain variables are those variables which are
#        characterized by probability distributions.  Each uncertain variable
#        specification can contain a distribution type, a mean, a standard
#        deviation, a lower bound, an upper bound, a histogram filename and a
#        descriptive tag.  State variables are “other” variables which are to
#        be mapped through the interface.  Each state variable specification
#        can have an initial state and a descriptor.  State variables provide a
#        convenience mechanism for parameterizing additional model inputs, such
#        as mesh density, solver convergence tolerance and time step controls,
#        and will be used to enact model adaptivity in future strategy
#        developments.

variables,
continuous_design = 2
  cdv_initial_point    0.9    1.1 \
  cdv_upper_bounds     5.8    2.9
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  cdv_lower_bounds     0.5   -2.9
  cdv_descriptor       ‘x1’   ‘x2’

# Responses specification
# NOTES: This specification implements a generalized Dakota data set by
#        specifying a set of functions and the types of gradients and Hessians
#        for these functions. Optimization data sets require specification of
#        num_objective_functions and num_nonlinear_constraints. Multiobjective
#        opimization is not yet supported, so num_objective_functions must
#        currently be equal to 1. Uncertainty quantification data sets are
#        specified by num_response_functions. Nonlinear least squares data
#        sets are specified with num_least_squares_terms. Gradient type
#        specification may be no_gradients, analytic_gradients,
#        numerical_gradients or mixed_gradients. Numerical and mixed gradient
#        specifications can optionally include selections for method_source,
#        interval_type, and fd_step_size. Mixed_gradient specifications require
#        id_numerical & id_analytic lists to specify the gradient types for
#        different function numbers. Hessian type specification may currently
#        be no_hessians or analytic_hessians.

responses,
num_objective_functions = 1
num_nonlinear_constraints = 2
analytic_gradients
no_hessians

# Strategy specification
# NOTES: Contains specifications for multilevel, SAO, and OUU strategies.  The
#        single_method strategy is a “fall through” strategy, in that in only
#        invokes a single iterator.  If no strategy specification appears, then
#        single_method is the default.

strategy,
single_method

# Method specification
# NOTES: method can currently be dot_frcg, dot_mmfd, dot_bfgs, dot_slp,
#        dot_sqp, npsol_sqp, optpp_cg, optpp_q_newton, optpp_g_newton,
#        optpp_newton, optpp_fd_newton, optpp_ba_newton, optpp_baq_newton,
#        optpp_bc_newton, optpp_bcq_newton, optpp_bcg_newton,
#        optpp_bc_ellipsoid, optpp_pds, optpp_test_new, sgopt_pga_real,
#        sgopt_pga_int, sgopt_coord_ps, sgopt_coord_sps, sgopt_solis_wets,
#        sgopt_strat_mc, nond_probability, nond_mean_value,
#        vector_parameter_study, list_parameter_study,
#        centered_parameter_study, or multidim_parameter_study. Most method
#        control parameters are optional with meaningful defaults. Default
#        values for optional parameters are defined in the DataMethod class
#        constructor and are documented in the Method Commands section of the
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#        User’s Instructions manual.

method,
        dot_mmfd,

  max_iterations = 50,
  convergence_tolerance = 1e-4
  output verbose
  optimization_type minimize

Sample 2: Least Squares

The following sample input file shows a nonlinear least squares 
Rosenbrock Example using OPT++’s Gauss-Newton method. It is
directory asDakota/test/dakota_rosenbrock.in .

interface,
application system,
  analysis_driver =    ‘rosenbrock_ls’

variables,
continuous_design = 2
 cdv_initial_point -1.2 1.0
 cdv_lower_bounds -2.0 -2.0
 cdv_upper_bounds  2.0 2.0
 cdv_descriptor  ‘x1’ ‘x2’

responses,
num_least_squares_terms = 2
analytic_gradients
no_hessians

method,
optpp_bcg_newton,
max_iterations = 50,
convergence_tolerance = 1e-4
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Sample 3: Nondeterministic Analysis

The following sample input file shows Latin Hypercube Monte C
Textbook Example. It is available in the test directory asDakota/test
dakota_textbook_lhs.in .

interface,
application system,
  analysis_driver=        ‘text_book’

variables,
uncertain = 2
  uv_distribution_type = ‘normal’ ‘normal’ \
  uv_means             =  248.89, 593.33 \
  uv_std_deviations    =   12.4,   29.7 \
  uv_lower_bounds      =  199.3,  474.63
  uv_upper_bounds      =  298.5,  712.
  uv_descriptor        =  ‘TF1’   ‘TF2’

responses,
num_response_functions = 3
no_gradients
no_hessians

strategy,
single_method

method,
        nond_probability,
          observations = 20,
          response_thresholds = 1.2e+11 6.e+04 3.5e+05\

  seed = 1
  sample_type lhs

Sample 4: Parameter Study

The following sample input file shows a 1-D vector parameter st
Example. It is available in the test directory asDakota/test/dakota_p

interface,
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application system,
  asynchronous
  analysis_driver = ‘text_book’

variables,
continuous_design = 3
  cdv_initial_point       1.0 1.0 1.0

responses,
num_objective_functions = 1
num_nonlinear_constraints = 2
analytic_gradients
analytic_hessians

method,
        vector_parameter_study

  step_vector = .1 .1 .1
  num_steps = 4

Sample 5: Multilevel Hybrid Strategy

The following sample input file shows a multilevel hybrid strategy
employs a genetic algorithm, coordinate pattern search and full 
optimization in succession to solve theTextbook Example. It is avail
directory asDakota/test/dakota_multilevel.in .

strategy,
multi_level uncoupled
  method_list = ‘GA’ ‘CPS’ ‘NLP’

method,
sgopt_pga_real
  id_method = ‘GA’
  variables_pointer = ‘V1’
  interface_pointer = ‘I1’
  responses_pointer = ‘R1’
  population_size = 10
  verbose output

method,
sgopt_coord_sps
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  id_method = ‘CPS’
  variables_pointer = ‘V1’
  interface_pointer = ‘I1’
  responses_pointer = ‘R1’
  verbose output
  initial_delta = 0.1
  threshold_delta = 1.e-4
  solution_accuracy = 1.e-10
  exploratory_moves best_first

method,
        optpp_newton

  id_method = ‘NLP’
  variables_pointer = ‘V1’
  interface_pointer = ‘I1’
  responses_pointer = ‘R2’
  gradient_tolerance = 1.e-12
  convergence_tolerance = 1.e-15

interface,
id_interface = ‘I1’
application direct,
  analysis_driver=  ‘text_book’

variables,
id_variables = ‘V1’
continuous_design = 2
  cdv_initial_point    0.6    0.7\
  cdv_upper_bounds     5.8    2.9 \
  cdv_lower_bounds     0.5   -2.9 \
  cdv_descriptor       ‘x1’   ‘x2’

responses,
id_responses = ‘R1’
num_objective_functions = 1
no_gradients
no_hessians

responses,
id_responses = ‘R2’
num_objective_functions = 1
analytic_gradients
analytic_hessians
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Running DAKOTA

Basic information required for running DAKOTA includes the nam
executable program and the command line syntax and options.

Executable Location

Remote installations

After installing and building the system from a new code distribu
and Checkouts andBasic Installation), the DAKOTA executable w
Dakota/src/<canonical_build_dir>/dakota , where the
describes the platform and operating system under which the ex
sparc-sun-solaris2.5.1 ). Thedakota file in theDakota/tes
soft link to theDakota/src/<canonical_build_dir>/dakota

Sandia developer-supported installations

The DAKOTA executable will have already been built by the DAK
installed in/usr/local/bin  on the supported server machines
shared by multiple platforms, simplified canonical names are so
distinguish between the executables (e.g.,dakota_sun , dakota_hp
dakota_ibm , etc.). For file systems unique to a single platform (
with /usr/local/bin ), dakota  without any canonical modifie



DAK TA 197

D
C

S

D

In

C
In

ble nameddakota  is

arious optional and

 required. The
r class allows
commonly used in

ption provides the
ples). The “-

provide the names of
start ”
d from the restart
ch some evaluations were
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Running DAKO

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
For the following discussions, it will be assumed that an executa
available in the user’s path.

Command Line Inputs

Executing the program with the following syntax:
dakota

will result in the following usage message which describes the v
required command line inputs:

usage: dakota [options and <args>]

-help (Print this summary)
-input <$val> (REQUIRED Dakota Problem Description file $val)
-read_restart <$val> (Read a previously written Dakota restart log file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart [$val] (Write a new Dakota restart log file $val)

Of these available command line inputs, only the “-input ” option is
command line input parser implemented in theCommandLineHandle
abbreviation so long as the abbreviation is unique. For example “-i ” is
place of “-input .”

The “-help ” option prints the usage message above. The “-input ” o
name of the DAKOTA input file (seeSample dakota.in Files for exam
read_restart ” and “-write_restart ” command line inputs
restart databases to read from and write to, respectively. The “-stop_re
command line input limits the number of function evaluations rea
database (the default is all the evaluations) for those cases in whi
erroneous or corrupted.
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Execution Syntax

Input/Output Management

To run DAKOTA with a particular input file, the following syntax c
dakota -i dakota.in

This will echo stdout and stderr to the terminal. To redirect output
of redirection variants can be used. The simplest of these redire

dakota -i dakota.in > dakota.out

To append to a file rather than overwrite it, “>>” is used in place o
as well as stdout, a “&” is appended with no embedded space, i.e
To override the noclobber environment variable (if set) in order to
existing output file or appending of a file that does not yet exist, a
embedded space, i.e. “>!”, “>&!”, “>>!”, or “>>&!” is used.

To run the dakota process in the background, append an amper
an embedded space, e.g.:

dakota -i dakota.in > dakota.out &

Refer to[Anderson, G., and Anderson, P., 1986] for more informati
and background commands.

Restart Management

To write a restart file using a particular name, the-write_restart
input is used:

dakota -i dakota.in -write_restart my_restart_file
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If no -write_restart  specification is used, then DAKOTA will
using the default namedakota.rst .

To restart DAKOTA from a restart file, the-read_restart  comma
used:

dakota -i dakota.in -read_restart my_restart_file

If no -read_restart  specification is used, then DAKOTA will n
information from any file (i.e., the default is no restart processing

If the -write_restart  and-read_restart  specifications ide
(including the case where-write_restart  is not specified and-re
identifiesdakota.rst ), then new evaluations will be appended 
file. If the -write_restart  and-read_restart  specification
files, then the evaluations read from the file identified by-read_restar
written to the-write_restart  file. Any new evaluations are the
write_restart file. In this way, restart operations can be chain
with the assurance that all of the relevant evaluations are presen

To read in only a portion of a restart file, the-stop_restart contro
the integer value specified refers to the number of entries to be r
which may differ from the evaluation number in the previous run
detected (since duplicates are not replicated in the restart file). I
stop_restart  specification, it is usually desirable to specify a
write_restart  so as to remove the records of erroneous or c
evaluations. For example, to read in the first 50 evaluations fromdako

dakota -i dakota.in -read_restart dakota.rst
-stop_restart 50 -write_restart dakota_new.rst
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Thedakota_new.rst  file will contain the 50 processed evaluat

dakota.rst  as well as any new evaluations. All evaluations fol
dakota.rst  have been removed from the latest restart record.

DAKOTA’s restart algorithm relies on its duplicate detection capa
restart file populates the list of function evaluations that have bee
the study is reinitiated, many of the function evaluations request
intercepted by the duplicate detection code. This approach has 
restoring the complete state of the iteration (including the ability 
subsequent duplicates) for all iterators and multi-iterator strategi
iterator-specific restart code. However, the possibility exists for n
to cause a divergence between the evaluations performed in the
studies. This has been extremely rare to date.



DAK tions 201

D
C

S

D

In

C
In

rmats (Table 9 through
tion, the actual syntax of
on as it would appear
 required group, or

x relationships that can
For example, in an
onal specification
ther required group
direct  is
) separated from
ical OR’s. Thus,

re the complete picture of
.spec .

ts the various group
d groups are presented in
ersustest  in
most required groups are
 11 and Table 12).
s to denote omissions

table entries.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Tabular descrip

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version

Tabular descriptions

In the following discussions of keyword specifications, tabular fo
Table 56) are used to present a short description of the specifica
the specification fromdakota.input.spec , a sample specificati
in an input file, the status of the specification (required, optional,
optional group), and the default for an optional specification.

It can be difficult to capture in a simple tabular format the comple
occur when specifications are nested within multiple groupings. 
interface keyword, theparameters_file  specification is an opti
within a required group specification (system ) separated from ano
specification (direct ) by a logical OR. The selection ofsystem  or
contained within another required group specification (application
other required group specifications (approximation , test ) by log
concisely describing a specification status in a table fails to captu
the specification inter-relationships which are present indakota.input

To better capture these relationships, this documentation presen
specifications in separate tables. Details of the outermost require
one or more tables (e.g.,application  versusapproximation  v
Table 10, Table 13, and Table 14), and details of each of the inner
presented in additional tables (e.g.,system  versusdirect  in Table
Ellipsis (...) are used within tabular entries for group specification
from the group specification which are explained in subsequent 
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Description

The interface section in a DAKOTA input file specifies how functi
performed. The three mechanisms currently in place for perform
involve interfacing with a simulation, an approximation, or a test 
case of a simulation, theapplication  interface is used to invoke
either system calls or direct function calls. In the system call cas
between DAKOTA and the simulation occurs through parameter a
the direct function case, communication occurs through the func
information and examples on interfacing with simulations is provi
Interface. In the case of an approximation, anapproximation  inte
selected to make use of surrogate modeling capabilities availabl
ApproximationInterface  class hierarchy (seeThe Approximation In
test  interface can be selected for direct access to polynomial t
compiled into the DAKOTA executable as part of the direct funct
Direct Function Application Interface). Thetest  interface provid
testing algorithms and strategies without system call overhead an
engineering simulations.

Several examples follow. The first example shows an application
which specifies the use of system calls, the names of the analys
parameters and results files, that separate filters will not be used
usage syntax will be specified, and that parameters and respons
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saved. Refer toThe Application Interface for more information on 
options.

interface,
application system,
  input_filter    =       ‘NO_FILTER’ \
  output_filter   =       ‘NO_FILTER’ \
  analysis_driver =       ‘rosenbrock’ \
  parameters_file =       ‘params.in’ \
  results_file    =       ‘results.out’ \
  analysis_usage  =       ‘DEFAULT’ \
  file_tag
  file_save

The next example shows an approximation interface specificatio
response surface approximation methodology.

interface,
approximation,
  response_surface

The next example shows an test interface specification which sp
text_book  internal test function.

interface,
test = ‘text_book’
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Specification

The interface specification has the following structure:
interface,

<set identifier>
<application specification>

or <approximation specification>
or <test specification>

Referring to theIDR Input Specification File, it is evident from the
identifier is an optional specification, and from the three required
parentheses) separated by OR’s, that one and only one of the thr
(application , approximation , or test ) must be provided.

The optional set identifier can be used to provide a unique ident
particular interface specification. A method can then identify the
interface by specifying this label in itsinterface_pointer  spec
Method Commands). The application, approximation, or test spe
define the specifics of the interface to be used by a method for th
into responses. The following sections describe each of these in
additional detail.
Developer’s notes:In the C++ implementation, the different interface classes are par
hierarchy which uses the virtualmap function to polymorphically define the interface’s
the specific identity and complexities of the interface to be hidden from the method
functionality is common among all interfaces.
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Set Identifier

The optional set identifier specification uses the keywordid_interface
string for use in identifying a particular interface specification wit
(see alsointerface_pointer  in theMethod Commands). For e
whose specification containsinterface_pointer = ‘I1’  will u
specification withid_interface = ‘I1’ .

It is appropriate to omit anid_interface  string in the interface s
correspondinginterface_pointer  string in the method specifi
interface specification is included in the input file, since the bind
interface is unambiguous in this case. More specifically, if a met
interface_pointer , then it will use the last interface specifica
the least potential for confusion when only a single interface spe
summarizes the set identifier inputs.

Table 9 Specification detail for set identifier

Description Specification Sample Status Default

Interface set
identifier

[id_interface =
<STRING>]

id_interface=
‘I1’

Optional use of last
interface
parsed
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Application Interface

The application interface uses a simulator program, and optiona
perform the parameter to response mapping. The simulator and fi
with either system calls or direct function calls. In the former cas
transfer of parameter and response data between DAKOTA and
This approach is simple and reliable and does not require any m
programs. In the latter direct function case, the function paramete
This approach requires modification to simulator programs so tha
DAKOTA; however it can be more efficient through the eliminatio
overhead, can be less prone to loss of precision in that data can
than written to and read from a file, and can enable multilevel pa
communicator partitioning as described inImplementation of Paralle

The application interface group specification contains several sp
valid for all application interfaces as well as additional specificat
specifically to system call and direct application interfaces. Table
specifications valid for all application interfaces, and Table 11 and
additional specifications for system call and direct application int
names of the input filter, output filter, and analysis driver executa
strings using theinput_filter , output_filter , andanalysis_
specifications. Both the system call and direct function applicatio
same specifications. Theanalysis_driver  specification is requ
input_filter  andoutput_filter  specifications are optiona
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behavior of no filter usage (string default is‘NO_FILTER’ ). If no filt
the interface is called a “1-piece Interface”; if filters are used, it is
Interface.” Failure capturing in application interfaces is governed
failure_capture specification. Supported directives for mitiga
as described inFailure capturing, areabort , retry , recover , an
continuation .

Note that the recent additions ofconcurrent_drivers , pre_drive
post_driver  to dakota.input.spec  is a placeholder for the
involving concurrent analyses within a function evaluation (seePendin
This capability will be described in the V1.2 release where it will

Table 10 Specification detail for application interfaces

Description Specification Sample Status Default

Application
interface

( {application} ... ) application Required
group

N/A

Input filter [input_filter =
<STRING>]

input_filter =
‘ifilter.exe’

Optional no input
filter

Output filter [output_filter =
<STRING>]

output_filter =
‘ofilter.exe’

Optional nooutput
filter

Analysis
driver

{analysis_driver =
<STRING>}

analysis_driver
= ‘analysis.exe’

Required N/A

Failure
capturing

[ {failure_capture}
{abort} | {retry =
<INTEGER>} |
{recover =
<LISTof><REAL>
} | {continuation} ]

failure_capture
retry = 5

Optional
group

abort
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the existing facility to becomeinput_filter , analysis_driver
output_filter (in which the use of a single analysis driver bec
the generalized specification).

In addition to the general application interface specifications, the
interface involves a selection betweensystem or direct required g
For system call application interfaces,asynchronous , parameters
results_file , analysis_usage , aprepro , file_tag , and
additional settings within the group specification. Asynchronous 
(system calls placed in the background with “&”) can be specifie
asynchronous  specification, whereas the default behavior is s
evaluations (system calls in the foreground). Refer toEnabling Softw
for additional information on asynchronous procedures. The par
names are supplied as strings using theparameters_file  andres
specifications. Both specifications are optional with the default d
temporary files (e.g.,/usr/tmp/aaaa08861 , seeUnix temporary
parameters and results file names are passed on the command 
(refer to1-piece Interface and3-piece Interface for details). The for
these files is as described inDAKOTA File Data Formats with the A
option for parameters files invoked via theaprepro  specification. S
command syntax can be entered as a string usinganalysis_usage
syntax replaces theanalysis_driver  portion of DAKOTA’s syst
does not affect theinput_filter  andoutput_filter  syntax (
present). Its default is no special syntax (string default is‘DEFAULT’
analysis_driver  will be used in the standard way as describ
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Application Interface. File tagging (appending parameters and re
function evaluation number; seeFile tagging) and file saving (leavin
results files in existence after their use is complete; seeFile saving) are
file_tag  andfile_save  flags. If these specifications are omi
file tagging (no appended function evaluation number) and no fil
removed after a function evaluation). File tagging is most useful 
evaluations are running simultaneously using files in a shared dis
most useful when debugging the data communication between D
simulation. The additional specifications for system call applicati
summarized in Table 11. Refer toThe System Call Application Inter
details and examples.

Table 11 Additional specifications for system call application i

Description Specification Sample Status Default

Application
interface type

( {system} ... ) system Required
group

N/A

Evaluation
synchronizati
on

[asynchronous] asynchronous Optional synchrono
us
evaluations

Parameters
file name

[parameters_file
= <STRING>]

parameters_file
= ‘params.in’

Optional Unix temp
files

Results file
name

[results_file =
<STRING>]

results_file =
‘results.out’

Optional Unix temp
files

Special
analysis
usage syntax

[analysis_usage
= <STRING>]

analysis_usage
= ‘analysis.exe
< params.in >
results.out’

Optional standard
analysis
usage
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For direct application interfaces,asynchronous , evaluation_serve
processors_per_evaluation  are additional settings within 
Asynchronous function evaluations (POSIX multithreading) can 
asynchronous  specification, whereas the default behavior is s
evaluations (direct procedure calls). Refer toEnabling Software Com
additional information on asynchronous procedures. Theevaluation_
processors_per_evaluation  specifications are used to con
partitions for multilevel parallelism. Typically, one or the other is 
the processors allocated to an iterator are divided into multiproc
however, if both are specified and they are not in agreement, the
evaluation_servers  takes precedence. Refer toSpecifying Par
additional details and examples on multiprocessor partitions. Th
interface specifications are summarized in Table 12.

Aprepro
format

[aprepro] aprepro Optional standard
format

File tag [file_tag] file_tag Optional no tagging

File save [file_save] file_save Optional no saving

Table 12 Additional specifications for direct application interfa

Description Specification Sample Status Default

Application
interface type

( {direct} ... ) direct Required
group

N/A

Table 11 Additional specifications for system call application i

Description Specification Sample Status Default
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Evaluation
synchronizati
on

[asynchronous] asynchronou
s

Optional synchrono
us
evaluations

Number of
evaluation
servers

[evaluation_ser
vers =
<INTEGER>]

evaluation_s
ervers = 5

Optional number of
processors
minus 1

Number of
processors
per evaluation

[processors_per
_evaluation =
<INTEGER>]

processors_p
er_evaluatio
n = 256

Optional 1

Table 12 Additional specifications for direct application interfa

Description Specification Sample Status Default
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Approximation Interface

The approximation interface uses an approximate representatio
surrogate model) to perform the parameter to response mapping
built and updated using data from the true model as described inThe A
Interface. Approximation interfaces are used extensively in the s
optimization strategy (seeSequential Approximate Optimization), in
to reduce expense by minimizing the number of function evaluat
true model.

The approximation interface specification requires the specificat
following approximation methods:neural_network , response_s
multi_point , ormars_surface . These specifications invoke
artificial neural network approximation (see theThe ANN Approxima
quadratic polynomial response surface approximation (seeThe RSM 
Interface), a multipoint approximation (not yet available), or a mu
regression spline approximation (seeThe MARS Approximation Inte
respectively. Table 13 summarizes the approximation interface s

Table 13 Specification detail for approximation interfaces

Description Specification Sample Status Default

Approximation
interface

( {approximation}
... )

approximation Required
group

N/A
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Type {neural_network} |
{response_surface}
| {multi_point} |
{mars_surface}

neural_network Required N/A

Table 13 Specification detail for approximation interfaces

Description Specification Sample Status Default
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Test Interface

The test interface uses an internally available test problem to pe
response mapping. These problems are compiled directly into the
part of the direct function application interface class (seeThe Direct F
Application Interface) and are used for algorithm testing.

The test interface specification requires the specification of a str
problem to be used. Table 14 summarizes this specification.

Currently, only the ‘text_book ’ simulator is available as an inter
Information on this problem is available in theExample Problems.

Table 14 Specification detail for test interfaces

Description Specification Sample Status Default

Test
interface

{test =
<STRING>}

test =
‘text_book’

Required N/A
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Description

The variables section in a DAKOTA input file specifies the param
a particular method. This parameter set is made up of design, un
specifications. Design variables can be continuous or discrete a
variables which an optimizer adjusts in order to locate an optima
design parameters can have an initial point, a lower bound, an u
descriptive tag. Uncertain variables are continuous variables wh
probability distributions. Each uncertain variable specification ca
type, a mean, a standard deviation, a lower bound, an upper bou
and a descriptive tag. State variables can be continuous or discr
variables which are to be mapped through the simulation interfa
specification can have an initial state and a descriptor. State varia
mechanism for parameterizing additional model inputs, such as 
convergence tolerances and time step controls, and will be used
in future strategy developments.

Several examples follow. In the first example, two continuous de
specified:

variables,                             \
continuous_design = 2              \
  cdv_initial_point    0.9    1.1  \
  cdv_upper_bounds     5.8    2.9  \
  cdv_lower_bounds     0.5   -2.9  \
  cdv_descriptor   ‘radius’ ‘location’
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In the next example, defaults are employed. In this case,cdv_initial_p
default to a vector of 0.0 values,cdv_upper_bounds  will default t
DBL_MAX (defined in thefloat.h  C header file),cdv_lower_boun
to a vector of-DBL_MAX values, andcdv_descriptor  will defau
‘cdv_i’ strings, wherei goes from one to two:

variables,                            \
continuous_design = 2

In the last example, a variables specification containing continuo
variables, uncertain variables, continuous and discrete state varia
shown:

variables,
id_variables = ‘V1’
continuous_design = 2
  cdv_initial_point    0.9    1.1 \
  cdv_upper_bounds     5.8    2.9 \
  cdv_lower_bounds     0.5   -2.9 \
  cdv_descriptor   ‘radius’ ‘location’ \
discrete_design = 1
  ddv_initial_point    2
  ddv_upper_bounds     1
  ddv_lower_bounds     3
  ddv_descriptor   ‘material’ \
uncertain = 2
  uv_distribution_type = ‘normal’, ‘lognormal’ \
  uv_means = 250.0  480.0
  uv_std_deviations = 12.4  27.1
  uv_lower_bounds = 220.0  410.0
  uv_upper_bounds = 280.0  550.0
  uv_descriptor = ‘T_fail_1’ ‘T_fail_2’ \
continuous_state = 2
  csv_initial_state = 1.e-4  1.e-6 \
  csv_descriptor = ‘EPSIT1’  ‘EPSIT2’ \
discrete_state = 1
  dsv_initial_state = 100
  dsv_descriptor = ‘load_case’
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The most general case of having a mixture of each of the differe
supported within all of the iterators even though certain iterators
types of variables (e.g., optimizers only modify design variables)
variables which are not under the direct control of a particular ite
through the interface unmodified for all evaluations of the iterato
variety of parameterizations within the model in addition to those
a particular iterator.

Supporting the most general case is more difficult since decision
how to appropriately size gradient vectors and Hessian matrices
needed with respect to any discrete variables (since these deriva
types of continuous variables for which derivatives are needed de
being performed. For optimization and least squares problems, f
only needed with respect to thecontinuous design variables since this
used by the optimizer in computing a search direction. Similarly,
analysis methods which use gradient and/or Hessian information
only needed with respect to theuncertain variables. And lastly, param
which are cataloguing gradient and/or Hessian information do no
among continuous variables; therefore, function derivatives must
to all continuous variables that are specified (continuous design, u
continuous state variables).
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Specification

The variables specification has the following structure:
variables,

<set identifier>
<continuous design variables specification> \
<discrete design variables specification> \
<uncertain variables specification> \
<continuous state variables specification> \
<discrete state variables specification>

Referring to theIDR Input Specification File, it is evident from the
that the set identifier specification and the continuous design, di
continuous state, and discrete state variables specifications are 
identifier is a stand-alone optional specification, whereas the latt
specifications, meaning that the group can either appear or not a
optional group is specified, then all required parts of the group m

The optional set identifier can be used to provide a unique ident
particular variables specification. A method can then identify the
variables by specifying this label in itsvariables_pointer  spec
Method Commands). The optional status of the continuous and d
uncertain, and continuous and discrete state variables specificat
specify only those variables which are present (rather than expli
number of a particular type of variables = 0). However, at least on
have nonzero size or an input error message will result. The follo
each of these specification components in additional detail.
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Set Identifier

The optional set identifier specification uses the keywordid_variables
string for use in identifying a particular variables set with a partic
variables_pointer  in theMethod Commands). For example,
specification containsvariables_pointer = ‘V1’  will use a v
id_variables = ‘V1’ .

If the set identifier specification is omitted, a particular variables 
method only if that method omits specifying avariables_pointer
variables set was the last set parsed (or is the only set parsed). In
one variables set exists, thenid_variables  can be safely omitted
specification andvariables_pointer  can be omitted from the 
specification(s), since there is no potential for ambiguity in this ca
the set identifier inputs.

Table 15 Specification detail for set identifier

Description Specification Sample Status Default

Variables set
identifier

[id_variables =
<STRING>]

id_variables =
‘V1’

Optional use of last
variables
parsed
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Design Variables

Within the optional continuous design variables specification gro
continuous design variables is a required specification and the in
upper bounds, and variable names of the continuous design var
specifications. Likewise, within the optional discrete design varia
the number of discrete design variables is a required specificatio
lower bounds, upper bounds, and variable names of the discrete
optional specifications. Default values for optional specifications
values, positive and negative machine limits for upper and lower
strings for descriptors. Table 16 summarizes the details of the co
specification and Table 17 summarizes the details of the discrete
specification.

Table 16 Specification detail for continuous design variables

Descriptio
n

Specification Sample Status Default

Continuous
design
variables

[ {continuous_design
= <INTEGER>} ... ]

continuous_
design = 4

Optional
group

no
continuous
design
variables

Initial
point

[cdv_initial_point =
<LISTof><REAL>]

cdv_initial_
point =
1.,2.1,0.3,4.
2

Optional Vector
values =
0.0
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Lower
bounds

[cdv_lower_bounds
= <LISTof>
<REAL>]

cdv_lower_b
ounds = -1.,-
2.,0.,-4.2

Optional Vector
values = -
DBL_MAX

Upper
bounds

[cdv_upper_bounds
= <LISTof>
<REAL>]

cdv_upper_
bounds =
5.2,6.3,6.6,9
.1

Optional Vector
values =
+DBL_MA
X

Descriptors [cdv_descriptor =
<LISTof>
<STRING>]

cdv_descript
or = ‘c1’,
’c2’, ’c3’,
’c4’

Optional Vector of
‘cdv_i’
where i =
1,2,3...

Table 17 Specification detail for discrete design variables

Descriptio
n

Specification Sample Status Default

Discrete
design
variables

[ {discrete_design =
<INTEGER>} ... ]

discrete_desi
gn = 2

Optional
group

no discrete
design
variables

Initial
point

[ddv_initial_point =
<LISTof>
<INTEGER>]

ddv_initial_p
oint = 3, 5

Optional Vector
values = 0

Lower
bounds

[ddv_lower_bounds
= <LISTof>
<INTEGER>]

ddv_lower_b
ounds = 0, 0

Optional Vector
values =
INT_MIN

Table 16 Specification detail for continuous design variables

Descriptio
n

Specification Sample Status Default
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Thecdv_initial_point  andddv_initial_point  specifica
point in design space from which an iterator is started for the co
design variables, respectively. Thecdv_lower_bounds , ddv_lowe
cdv_upper_bounds andddv_upper_bounds restrict the size o
space and are frequently used to prevent nonphysical designs. T
bounds are linked to architecture constants (DBL_MAX, INT_MAX, INT
defined in thefloat.h  andlimits.h  system header files. Thecdv
andddv_descriptor  specifications supply strings which will b
the Dakota output to help identify the numerical values for these

Upper
bounds

[ddv_upper_bounds
= <LISTof>
<INTEGER>]

ddv_upper_b
ounds = 10,
10

Optional Vector
values =
INT_MAX

Descriptors [ddv_descriptor =
<LISTof>
<STRING>]

ddv_descript
or = ‘d1’,
’d2’

Optional Vector of
‘ddv_i’
where i =
1,2,3,...

Table 17 Specification detail for discrete design variables

Descriptio
n

Specification Sample Status Default
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Uncertain Variables

Within the optional uncertain variables specification group, the n
variables and the distribution types are required specifications a
deviations, lower bounds, upper bounds, histogram file names, a
optional specifications. That is, if the uncertain variables group s
then the number of uncertain variables and distribution types mu
minimum, whereas the other specifications in the group can rely
18 summarizes the details of the uncertain variable specification

Table 18 Specification detail for uncertain variables specificat

Description Specification Sample Status Default

Uncertain
variables

[ {uncertain =
<INTEGER>} ...
]

uncertain = 2 Optional
group

no
uncertain
variables

Distribution
type

{uv_distribution_
type = <LISTof>
<STRING>}

uv_distribution_
type = ‘normal’,
‘lognormal’

Required N/A

Means [uv_means =
<LISTof>
<REAL>]

uv_means =
250., 480.

Optional Vector
values = 0

Standard
deviations

[uv_std_deviatio
ns = <LISTof>
<REAL>]

uv_std_deviatio
ns = 12.4, 27.1

Optional Vector
values = 0
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Theuv_distribution_type  vector identifies the type of distr
describe the statistics of each uncertain variable. Allowable distrib
‘normal’, ‘lognormal’, ‘constant’, ‘uniform’, ‘loguniform’, ‘weibull’, 
‘histogram’. Theuv_means  anduv_std_deviations  specifica
data for those distributions which are characterized by means an
(normal and weibull are; constant, uniform, and histogram are no
uv_lower_bounds  anduv_upper_bounds  restrict the tails of
those distributions for which bounds are meaningful. Default bou
architecture constant (DBL_MAX) defined in thefloat.h  system he
uv_filenames  specification provides the file names for variabl
distribution type. Theuv_descriptor  specification provides stri

Lower
bounds

[uv_lower_bound
s = <LISTof>
<REAL>]

uv_lower_boun
ds = 220., 410.

Optional Vector
values =-
DBL_MAX

Upper
bounds

[uv_upper_bound
s = <LISTof>
<REAL>]

uv_upper_boun
ds = 280., 550.

Optional Vector
values=+
DBL_MAX

Histogram
file names

[uv_filenames =
<LISTof>
<STRING>]

uv_filenames =
‘T_fail1.dat’,
‘T_fail2.dat’

Optional no
histogram
file names

Descriptors [uv_descriptor =
<LISTof>
<STRING>]

uv_descriptor =
‘T_fail1’,
‘T_fail2’

Optional Vector of
‘uv_i’
where i =
1,2,3,...

Table 18 Specification detail for uncertain variables specificat

Description Specification Sample Status Default



DAK les 227

D
C

S

D

In

V
C

al values for these

 the number of uncertain
each of theuv_means ,

, and
ith place holders. For
gram’, then
’s are place holders in
y standard deviations.
e only the histogram
 was chosen since it is
OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - Uncertain Variab

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version
replicated through the Dakota output to help identify the numeric
parameters.

Each of the vector inputs, if specified, must be of length equal to
variables. Since certain distribution types may not have values for
uv_std_deviations , uv_lower_bounds , uv_upper_bounds
uv_filenames  specifications, these arrays should be padded w
example, ifuv_distribution_type  = ‘normal’, ‘uniform’, ‘histo
uv_std_deviations might equal 12.0, 0, 0 where the trailing 0
the array since uniform and histogram distributions do not specif
Likewise,uv_filenames would be specified as ‘’, ‘’, ‘file.dat’ sinc
distribution type requires a file name specification. This behavior
believed to be more readable at a glance.
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State Variables

Within the optional continuous state variables specification grou
continuous state variables and their initial states are required sp
continuous descriptor vector is an optional specification. Likewis
state variables specification group, the number of discrete state 
states are required specifications and the discrete descriptor vec
specification. These variables provide a convenient mechanism 
model parameterizations such as mesh density, simulation conv
time step controls. Table 19 summarizes the details of the contin
specification and Table 20 summarizes the details of the discrete
specification.

Table 19 Specification detail for continuous state variables

Description Specification Sample Status Default

Continuous
state
variables

[ {continuous_state
= <INTEGER>} ... ]

continuous
_state = 2

Optional
group

No
continuous
state
variables

Initial states {csv_initial_state =
<LISTof><REAL>}

csv_initial_
state = 3.1,
4.2

Required N/A

Descriptors [csv_descriptor =
<LISTof><STRING
>]

csv_descrip
tor =
‘EPSIT1’,
‘EPSIT2’

Optional Vector of
‘csv_i’
wherei =
1,2,3,...
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Thecsv_initial_state  anddsv_initial_state  specifica
initial values for the continuous and discrete state variables whic
to the simulator (e.g., in order to define parameterized modeling
csv_descriptor  anddsv_descriptor  vectors provide string
replicated through the Dakota output to help identify the numeric
parameters.

Table 20 Specification detail for discrete state variables

Description Specification Sample Status Default

Discrete
state
variables

[ {discrete_state =
<INTEGER>} ... ]

discrete_sta
te = 2

Optional
group

Nodiscrete
state
variables

Initial states {dsv_initial_state =
<LISTof><REAL>}

dsv_initial_
state = 3, 4

Required N/A

Descriptors [dsv_descriptor =
<LISTof><STRING
>]

dsv_descrip
tor =
‘material1’,
‘material2’

Optional Vector of
‘dsv_i’
wherei =
1,2,3,...
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Description

The responses specification in a DAKOTA input file specifies the
recovered from the interface during the course of iteration. This 
set of functions, their first derivative vectors (gradients), and thei
matrices (Hessians). This abstraction provides a generic data co
DakotaResponse class) whose contents are interpreted differentl
type of iteration being performed. In the case of optimization, the
of an objective function (or objective functions in the case of mult
and nonlinear constraints. Linear constraints are not part of a re
coefficients can be communicated to an optimizer at startup and
for all function evaluations (seeNPSOL Method). In the case of lea
the functions consist of individual residual terms (not the sum of the
function; this function is computed internally by the least squares
nondeterministic iterators, the function set is made up of generic
which the effect of parameter uncertainty is to be quantified. Las
iterators may be used with any of the response data set types. W
implementation, the same data structures are used to provide ea
set types; only the interpretation of the data varies from iterator b

Gradient availability may be described byno_gradients ,
numerical_gradients , analytic_gradients,  or mixed_g
“no_gradients ” means that gradient information is not needed
“numerical_gradients ” means that gradient information is n
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computed with finite differences using either the native or one of
differencing routines. “analytic_gradients ” means that gradi
available directly from the simulation (finite differencing is not req
“mixed_gradients ” means that some gradient information is 
the simulation whereas the rest will have to be finite differenced.

Hessian availability may be described byno_hessians  or analytic_
where the meanings are the same as for the corresponding grad
Numerical Hessians are not currently supported, since, in the ca
would imply a finite difference-Newton technique for which a dire
exists. Capability for numerical Hessians can be added if the ne

The responses specification provides a description of the data s
by the iteratorduring the course of its iteration. This should be disting
set described in an active set vector (seeDAKOTA File Data Formats
the subset of the available data neededon a particular function evalu
way, the responses specification is a broad description of the dat
the active set vector describes the particular subset of the availa
needed.

Several examples follow. The first example shows an optimizatio
function and two nonlinear constraints. These three functions ha
availability and no Hessian availability.

responses,
num_objective_functions = 1
num_nonlinear_constraints = 2
analytic_gradients
no_hessians
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The next example shows a specification for a least squares data
functions will have numerical gradients computed using the dako
routine with central differences of 0.1% (plus/minus delta value =

responses,
num_least_squares_terms = 6
numerical_gradients

method_source dakota
interval_type central
fd_step_size = .001

no_hessians

The last example shows a specification that could be used with a
The three response functions have no gradient or Hessian availa
function values will be used by the iterator.

responses,
num_response_functions = 3
no_gradients
no_hessians

Parameter study iterators are not restricted in terms of the respon
catalogued; they may be used with any of the function specificat
above.
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Specification

The responses specification has the following structure:
responses,

<set identifier>
<active set vector usage>
<function specification>
<gradient specification>
<hessian specification>

Referring to theIDR Input Specification File, it is evident from the
that the set identifier and the active set vector usage specificatio
the function, gradient, and Hessian specifications are all require
which contains several possible specifications separated by logi
specification must be one of three types: 1) a group containing o
functions, 2) a least squares terms specification, or 3) a respons
The gradient specification must be one of four types: 1) no grad
gradients, 3) analytic gradients, or 4) mixed gradients. And the H
be either 1) no Hessians or 2) analytic Hessians.

The optional set identifier can be used to provide a unique ident
particular responses specification. A method can then identify th
response set by specifying this label in itsresponses_pointer  sp
Method Commands). The active set vector usage setting allows th
set distinctions (default is on) so that a simulation interface can n
set logic (at the possible penalty of wasted computations). The f
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Hessian specifications define the data set that can be recovered
following sections describe each of these specification compone
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Set Identifier

The optional set identifier specification uses the keywordid_response
string for use in identifying a particular responses set with a part
responses_pointer  in theMethod Commands). For example,
specification containsresponses_pointer = ‘R1’  will use a r
id_responses = ‘R1’ .

If this specification is omitted, a particular responses set will be 
that method omits specifying aresponses_pointer  and if the re
last set parsed (or is the only set parsed). In common practice, i
exists, thenid_responses  can be safely omitted from the respo
responses_pointer  can be omitted from the method specific
no potential for ambiguity in this case. Table 21 summarizes the

Table 21 Specification detail for set identifier

Description Specification Sample Status Default

Responses
set identifier

[id_responses =
<STRING>]

id_responses =
‘R1’

Optional use of last
responses
parsed
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Active Set Vector Usage

A future capability will be the option to turn the active set vector (A
Currently, only the defaulton  setting is supported; its behavior is d
File Data Formats. Setting the ASV control tooff will cause Dakota
“full” data set (the full function, gradient, and Hessian data that is
as specified in the responses specification)on each function evaluati
ASV control isoff  and the responses section specifies four resp
gradients, and no Hessians, then the ASV onevery function evaluatio
length four containing all threes, regardless of what subset of this
While wasteful of computations in many instances, this removes
logic in user-built interfaces. That is, ASV control set toon will result
that specific data which is needed on each evaluation and will re
to read the ASV requests and perform the appropriate logic in con
the data requested. Conversely, ASV control set tooff  removes the 
additional logic and allows the user to return the same data set o
general, the defaulton behavior is recommended for efficiency thro
unnecessary computations, although in some instances, ASV co
simplify operations and speed filter development for time critical

Note that in all cases, the data returned to DAKOTA from the use
the ASV passed in (or else a response recovery error will result)
observation is that when ASV control isoff , the ASV vector values
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one evaluation to the next. Therefore their content need not be c
evaluation. Table 22 summarizes the active set vector usage set

Table 22 Specification detail for active set vector usage specifi

Description Specification Sample Status Default

Active set
vector usage

[ {active_set_vector}
{on} | {off}]

active_set_vector
on

Optional
group

on
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Function specification

The function specification must be one of three types: 1) a group
constraint functions, 2) a least squares terms specification, or 3)
specification. These function sets correspond to optimization, le
uncertainty quantification iterators, respectively. Parameter stud
with any of the three function specifications.

Objective and Constraint Functions (Optimization

An optimization data set is specified usingnum_objective_functions
optionallynum_nonlinear_constraints . Multiobjective optim
supported within the optimizer branch, sonum_objective_functions
to one when using DOT, NPSOL, OPT++, or SGOPT. Direct inpu
can be used to improve the efficiency of NPSOL (seelinear_constrain
Method Independent Controls). However, DOT, OPT++, and SGO
specialized handling of linear constraints; in these cases, any lin
included in the more generalnum_nonlinear_constraints  cou
summarizes the optimization data set specification.
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Least Squares Terms (Least Squares Data Set)

A least squares data set is specified usingnum_least_squares_terms
these terms is a residual function to be driven towards zero. The
commonly encountered in parameter estimation and model valid
problems are most efficiently solved using special-purpose least
Gauss-Newton or Levenberg-Marquardt; however, they may also
purpose optimization algorithms. It is important to realize that, wh
these problems with either least squares or optimization algorithm
to be returned from the simulator are different. Least squares inv
functions whereas optimization involves a single objective functio
the residuals). Therefore, derivative data in the least squares ca
the least squares terms, whereas the optimization case involves
the squares objective function. Switching between the two appro
different simulation interfaces capable of returning the different g
data required. Table 24 summarizes the least squares data set s

Table 23 Specification detail for optimization data sets

Description Specification Sample Status Default

Number of
objective
functions

( {num_objective_functions
= <INTEGER>} ...)

num_objective
_functions = 1

Required
group

N/A

Number of
nonlinear
constraints

[num_nonlinear_constraint
s = <INTEGER>]

num_nonlinear
_constraints =
2

Optional 0
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Response Functions (Generic Data Set)

A generic response data set is specified usingnum_response_functio
these functions is simply a response quantity of interest with no 
taken by the method in use. This type of data set is used by unc
methods, in which the effect of parameter uncertainty on respons
and can also be used in parameter studies (although parameter s
this data set), in which the effect of parameter variations on resp
evaluated. Whereas objective, constraint, and residual functions
within the data sets used by optimization and least squares algo
linked to their identity), the response functions in an uncertainty 
parameter study need not have a specific interpretation. This is 
that the values of these response functions are not fed back to t
for additional iterative improvement. Therefore, the user is free t
functional form is convenient. Table 25 summarizes the generic r
specification.

Table 24 Specification detail for nonlinear least squares data 

Description Specification Sample Status Default

Number of
LeastSquares
Terms

{num_least_squares
_terms =
<INTEGER>}

num_least_squares
_terms = 20

Required N/A
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Table 25 Specification detail for generic response function da

Description Specification Sample Status Default

Number of
Response
Functions

{num_response_
functions =
<INTEGER>}

num_response_
functions = 2

Required N/A
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Gradient specification

The gradient specification must be one of four types: 1) no grad
gradients, 3) analytic gradients, or 4) mixed gradients.

No Gradients

Theno_gradients  specification means that gradient informatio
study. Therefore, it will neither be retrieved from the simulation n
differences.no_gradients  is a complete specification for this c

Numerical Gradients

Thenumerical_gradients  specification means that gradient
and will be computed with finite differences using either the nativ
finite differencing routines. Themethod_source  setting specifies
finite difference routine that will be used to compute the numeric
denotes DAKOTA’s internal finite differencing algorithm andvendor
differencing algorithm supplied by the iterator package in use (DO
each have their own internal finite differencing routines). Thevendor
chosen as the default since certain libraries modify their algorith
that finite differencing is being performed. Since thedakota routine
the optimizers (the optimizers are configured to accept user-supp
assume to be of analytic accuracy), the potential exists for thevendor
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the use of an algorithm more optimized for the higher expense a
finite-differencing (e.g., NPSOL uses gradients in its line search 
gradient mode, but uses a value-based line search procedure w
differencing). However, while this algorithm modification may red
operations, thedakota  routine is preferable when seeking to exp
finite difference evaluations (seeExploiting Parallelism). And in fact
gradients in its line search (user-supplied gradient mode) provid
balancing for parallel optimization without need to resort to spec
approaches. Theinterval_type  setting is used to select betwef
central  differences in the numerical gradient calculations. The
OPT++ routines have bothforward  andcentral  differences ava
starts withforward  differences and automatically switches tocentra
the iteration progresses (the user has no control over this). Lastlfd_s
specifies therelative finite difference step size to be used in the co
DAKOTA, DOT, and OPT++, the intervals are computed by multi
fd_step_size  with the current parameter value. In this case, a
differencing interval is needed when the current parameter value
prevents finite difference intervals for the parameter which are to
differences in the response quantities being computed. DAKOTA
use1.e-2*fd_step_size  as their minimum absolute differenc
fd_step_size = .001 , for example, DAKOTA, DOT, and OPT
of .001* current value with a minimum interval of1.e-5 . NPSOL u
formula for its finite difference intervals:fd_step_size*(1+| cur
value|) . This definition has the advantage of eliminating the need
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differencing interval since the interval no longer goes to zero as 
value goes to zero. Table 26 summarizes the numerical gradien

Analytic Gradients

Theanalytic_gradients  specification means that gradient in
directly from the simulation (finite differencing is not required). T
return the gradient data in the DAKOTA format (seeDAKOTA File Da
the case of file transfer of data.analytic_gradients  is a compl
this case.

Table 26 Specification detail for numerical gradients

Description Specification Sample Status Default

Numerical
gradients

( {numerical_gradients}
... )

numerical_grad
ients

Required
group

N/A

Method
source

[ {method_source}
{dakota} | {vendor} ]

method_source,
dakota

Optional
group

vendor

Interval
Type

[ {interval_type}
{forward} | {central} ]

interval_type,
forward

Optional
group

forward

Finite
difference
step size

[fd_step_size =
<REAL>]

fd_step_size =
0.001

Optional 0.001
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Mixed Gradients

Themixed_gradients  specification means that some gradien
available directly from the simulation (analytic) whereas the rest
differenced (numerical). This specification is useful since it is ge
of as much analytic gradient information as is available and then t
rest. For example, the objective function may be a simple analyt
variables (e.g., weight) whereas the constraints are nonlinear im
complex analyses (e.g., maximum stress). Theid_analytic  list sp
the functions which have analytic gradients, and theid_numerical
number the functions which must use numerical gradients. Themetho
interval_type , andfd_step_size  specifications are as des
under theNumerical Gradients specification and pertain to those 
id_numerical  list. Table 27 summarizes the mixed gradient sp

Table 27 Specification detail for mixed gradients

Description Specification Sample Status Default

Mixed
gradients

( {mixed_gradients}
... )

mixed_gradients Required
group

N/A

Analytic
derivatives
function list

{id_analytic =
<LISTof>
<INTEGER>

id_analytic = 2,4 Required N/A

Numerical
derivatives
function list

{id_numerical =
<LISTof>
<INTEGER>}

id_numerical =
1,3,5

Required N/A
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Method
source

[ {method_source}
{dakota} | {vendor} ]

method_source,
dakota

Optional
group

vendor

Interval
Type

[ {interval_type}
{forward} | {central} ]

interval_type,
forward

Optional
group

forward

Finite
difference
step size

[fd_step_size =
<REAL>]

fd_step_size =
0.001

Optional 0.001

Table 27 Specification detail for mixed gradients

Description Specification Sample Status Default
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Hessian specification

Hessian availability must be specified with eitherno_hessians  or
analytic_hessians . Numerical Hessians are not currently su
case of optimization, this would imply a finite difference-Newton 
direct algorithm already exists. Capability for numerical Hessians
arises.

No Hessians

Theno_hessians  specification means that the method does no
information. Therefore, it will neither be retrieved from the simula
finite differences.no_hessians  is a complete specification for th

Analytic Hessians

Theanalytic_hessians  specification means that Hessian inf
directly from the simulation. The simulation must return the Hessi
format (seeDAKOTA File Data Formats) for the case of file transf
analytic_hessians  is a complete specification for this case.
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Description

The strategy section in a DAKOTA input file specifies the top lev
govern the management of iterators and models in the solution o
Five strategies currently exist:multi_level , seq_approximate_o
opt_under_uncertainty , branch_and_bound , andsingle_m
multi_level  optimization strategy, a list of methods is specifie
synergistically in seeking an optimal design.The goal here is to e
different optimization algorithms through different stages of the o
Global/local hybrids (e.g., genetic algorithms combined with nonl
a common example in which the desire for a global optimum is ba
efficient navigation to a local optimum. In sequential approximat
(seq_approximate_opt ), a set of points is selected from a de
computer experiments (DACE) and evaluated with the simulation
then used to build an approximate model, such as a response su
network. An optimizer iterates on this approximate model and co
optimum. This point is evaluated with the simulation model and t
improvement in the simulation model is used to modify the boun
of the approximation. The approximation is then updated with th
additional approximate optimization cycles are performed until c
with seq_approximate_opt is to reduce the total number of sim
the optimization. In optimization under uncertainty (opt_under_unce
nondeterministic iterator is used to evaluate the effect of uncerta
on responses of interest. These responses and/or their statistics
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objective and constraint functions of an optimization process. Th
iteration may be nested within the optimization iteration, nested 
segregated in an uncoupled approach. In the branch and bound
(branch_and_bound ), mixed continuous/discrete applications 
parameter domain decomposition and relaxation of integrality co
single_method  strategy provides the means for simple execu

The specification formulti_level involves a list of method ident
of the corresponding method specifications (seeMethod Commands)
responsibility for identifying the variables, interface, and respons
each method will use. Theseq_approximate_opt strategy must
an approximate interface, and an actual interface. The same var
specifications will be used by both interfaces. Theopt_under_uncert
strategy must specify the optimization and nondeterministic itera
the corresponding method specifications points to the variables,
specifications to be used (which, in this case, will likely be differe
and nondeterministic methods use different data sets). Thebranch_an
strategy must specify one iterator and the number of concurrent
utilized. Thesingle_method  strategy may specify a method ide
specifies the variables, interface, and responses identifiers, or it
additional and invoke the default behavior of employing the last 
Invoking the default behavior is particularly appropriate if only one
for method, variables, interface, and responses since there is no
this case. In addition,single_method is the default strategy if no
is supplied.
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Example specifications for the five strategies follow. Amulti_level

strategy,
multi_level uncoupled

method_list = ‘GA1’, ‘CPS1’, ‘NLP1’

A seq_approximate_opt  example specification is:
strategy,

seq_approximate_opt
opt_method = ‘NLP1’
approximate_interface = ‘resp_surf’ \
actual_interface = ‘simulation’

An opt_under_uncertainty  example specification is:
strategy,

opt_under_uncertainty
opt_method = ‘NLP1’
nond_method = ‘LHS_MC’

A branch_and_bound  example specification is:
strategy,

branch_and_bound
opt_method = ‘NLP1’
iterator_servers = 4

A single_method  example specification is:
strategy,

single_method
method_pointer = ‘NLP1’

In addition to management of multiple iterators and models, the 
the division of operations between master and slave processors
Parallelism for additional details.
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Specification

The strategy specification has the following structure:
strategy,

<single_method> or <multi_level> or <seq_approximate_opt> or
<opt_under_uncertainty> or <branch_and_bound>

Referring to theIDR Input Specification File, it is evident that the fi
specifications (multi_level , seq_approximate_opt ,
opt_under_uncertainty , branch_and_bound , orsingle_m
required groups (enclosing in parentheses) separated by OR’s. 
strategy specification must be provided.

The various strategy specifications identify the methods and mod
interfaces) that will be employed in the strategy as well as contro
switching) between the methods and models. The methods and m
string pointers that correspond to identifier strings in the method
specifications (such as ‘method1’ or ‘interface1’). They should N
method selections (such asdot_mmfd ) or interface types (such asapp
following sections describe each of these strategy specifications
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Single Method Commands

Thesingle_method  strategy may be specified using thesingle_m
by itself, or an optionalmethod_pointer  may additionally be us
particular method. For example,method_pointer = ‘NLP1’  po
whose specification containsid_method = ‘NLP1’ . If method_p
used, then the last method specification parsed will be used as t
default behavior is most appropriate if only one method specificat
is no potential source of confusion in this case. Table 28 summa
single_method  strategy inputs.

Refer toSingle Method for an overview of thesingle_method  ob
logic.

Table 28 Specification detail for single_method strategies

Description Specification Sample Status Default

Singlemethod
strategy

( {single_method}
... )

single_method Required
group

N/A

Method
pointer

[method_pointer
= <STRING>]

method_pointer
= ‘NLP1’

Optional use of last
method
parsed
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Multilevel Hybrid Optimization C

Themulti_level hybrid optimization strategy has uncoupled, u
coupled approaches (seeMultilevel Hybrid Optimization  for more i
algorithms employed). In the two uncoupled approaches, a list of
with themethod_list  specification specifies the identity and se
be used. Any number of iterators may be specified. The uncouple
be specified by turning on theadaptive  flag. If theadaptive  flag
progress_threshold must also be specified since it is a requi
group specification. In the nonadaptive case, method switching i
separate convergence controls of each method. In the adaptive 
switching occurs when the internal progress metric (normalized b
below the user specifiedprogress_threshold . Table 29 summa
multi_level  strategy inputs.

Table 29 Specification detail for uncoupled multi_level strateg

Description Specification Sample Status Default

Multi-level
strategy

( {multi_level} ... ) multi_level Required
group

N/A

uncoupled
approach

( {uncoupled} ... ) uncoupled Required
group

N/A

adaptive
control

[ {adaptive}
{progress_thresho
ld = <REAL>} ]

adaptive,
progress_thresh
old = 0.5

Optional
group

no
adaptive
control
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In the coupled approach, global and local method strings supplie
global_method  andlocal_method specifications identify th
used. Thelocal_search_probability  setting is as optional 
supplying the probability (between 0.0 and 1.0) of employing loc
estimates within the global search. Table 30 summarizes the coum
strategy inputs.

List of
methods

{method_list =
<LISTof>
<STRING}

method_list =
‘GA1’, ‘CPS1’,
‘NLP1’

Required N/A

Table 30 Specification detail for coupled multi_level strategies

Description Specification Sample Status Default

Multi-level
strategy

( {multi_level} ... ) multi_level Required
group

N/A

coupled
approach

( {coupled} ... ) coupled Required
group

N/A

Global
method

{global_method =
<STRING>}

global_method
= ‘GA1’

Required N/A

Local
method

{local_method =
<STRING>}

local_method
= ‘NLP1’

Required N/A

Local search
probability

[local_search_prob
ability = <REAL>]

local_search_p
robability = 0.5

Optional 0.1

Table 29 Specification detail for uncoupled multi_level strateg

Description Specification Sample Status Default
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In either the uncoupled or coupled case, each of the methods lis
cross-referencing its own variables, interface, and responses sp
interface_pointer , variables_pointer , andresponses_
Method Independent Controls) within its method specification.
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Sequential Approximate Optimiz
Commands

Theseq_approximate_opt  strategy must specify an iterator u
an approximate interface usingapproximate_interface , and a
interface usingactual_interface . The method specification id
opt_method  is responsible for pointing to the variables and res
that will be used by both interfaces (usingvariables_pointer  an
responses_pointer ; seeMethod Independent Controls). Table
seq_approximate_opt  strategy inputs.

Table 31 Specification detail for seq_approximate_opt strateg

Description Specification Sample Status Default

Sequential
approximate
optimization
strategy

({seq_approximate
_opt} ... )

seq_approximate_
opt

Required
group

N/A

Optimization
method

{opt_method =
<STRING>}

opt_method =
‘NLP1’

Required N/A

Approximate
interface

{approximate_inter
face = <STRING>}

approximate_inter
face = ‘resp_surf’

Required N/A

Actual
interface

{actual_interface =
<STRING>}

actual_interface =
‘simulation’

Required N/A
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Refer toSequential Approximate Optimization for an overview of 
seq_approximate_opt  objects and algorithm logic.
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Optimization Under Uncertainty 

Theopt_under_uncertainty  strategy must specify an optim
opt_method  and a nondeterministic iterator usingnond_method . 
specifications identified byopt_method  andnond_method  are re
pointing to the variables, interface, and responses specifications
methods (usinginterface_pointer , variables_pointer , a
responses_pointer ; seeMethod Independent Controls). Since
nondeterministic iteration use very different types of data, the va
responses specifications used by these methods will often be di
summarizes theopt_under_uncertainty  strategy inputs.

Refer toOptimization Under Uncertainty  for an overview of the
opt_under_uncertainty  objects and algorithm logic.

Table 32 Specification detail for opt_under_uncertainty strateg

Description Specification Sample Status Default

Optimization
under uncertainty
strategy

({opt_under_un
certainty} ... )

opt_under_un
certainty

Required
group

N/A

Optimization
method

{opt_method =
<STRING>}

opt_method =
‘NLP1’

Required N/A

Nondeterministic
method

{nond_method=
<STRING>}

nond_method
= ‘LHS_MC’

Required N/A



DAK mmands 261

D
C

S

D

In

C

t_method  and
. The method

 to the variables,
ethod (using

pointer ; see
nd_bound

nd  objects and
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Branch and Bound Co

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version

Branch and Bound Commands

Thebranch_and_bound  strategy must specify an iterator usingop
the number of concurrent iterator servers usingiterator_servers
specification identified byopt_method  is responsible for pointing
interface, and responses specifications that will be used by the m
interface_pointer , variables_pointer , andresponses_
Method Independent Controls). Table 33 summarizes thebranch_a
strategy inputs.

Refer toBranch and Bound for an overview of thebranch_and_bou
algorithm logic.

Table 33 Specification detail for branch_and_bound strategies

Description Specification Sample Status Default

Branch and
bound
strategy

({branch_and_bou
nd} ... )

branch_and_boun
d

Required
group

N/A

Optimization
method

{opt_method =
<STRING>}

opt_method =
‘NLP1’

Required N/A

Concurrent
iterator
servers

{iterator_servers =
<INTEGER>}

iterator_servers =
4

Required N/A
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Method Commands

scription

ecification

thod Independent Controls

T Methods
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Description

The method section in a DAKOTA input file specifies the name an
The terms “method” and “iterator” can be used interchangeably,
refers to an input specification whereas iterator usually refers to
DakotaIterator hierarchy. A method specification, then, is used to
the iterator hierarchy (seeIterator and Strategy Hierarchies), which
optimization, uncertainty quantification, least squares, and param
Capability Overview for more information on these iterator branc
be used alone or with other iterators as dictated by the strategy 
Strategy Commands for strategy command syntax and toStrategy C
strategy algorithm descriptions).

Several examples follow. The first example shows a specification
method.

method,
dot_sqp
  id_method = ‘NLP1’
  variables_pointer = ‘V1’
  interface_pointer = ‘I1’ \
  responses_pointer = ‘R1’

This example demonstrates the use of identifiers and pointers. T
has been tagged with the string‘NLP1’ . This string can be used in
specification to identify that this method will be invoked by the st
variables, interface, and responses specifications which have be
‘V1’ , ‘I1’ , and‘R1’  strings are being identified as the specific
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will use in its iteration. Note that this type of tagging and cross-re
when relationships among specifications are unambiguous (due
one specification). The next example shows a specification for a

method,
optpp_g_newton
  convergence_tolerance = 1.e-8
  max_iterations = 10
  search_method, trust_region
  gradient_tolerance = 1.e-6

This example demonstrates some method independent and met
Theconvergence_tolerance  andmax_iterations  settings
independent controls, in that they are defined for a variety of me
search_method  andgradient_tolerance  settings are meth
controls, in that they are only meaningful for OPT++ methods. Th
specification for a nondeterministic iterator.

method,
nond_probability
  observations = 100
  seed = 1
  sample_type, lhs
  response_thresholds = 1000., 500.

Each of the nondeterministic method controls are method depen
example shows a specification for a parameter study iterator wh
controls are method dependent.

method,
parameter_study
  step_vector = 1.,1.,1.
  num_steps = 10
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Specification

The method specification has the following structure:
method,

<method independent controls>
<method selection>

<method dependent controls>

where<method selection>  is one of the following:
dot_frcg, dot_mmfd, dot_bfgs, dot_slp, dot_sqp, npsol_sqp, optpp_cg,
optpp_q_newton, optpp_g_newton, optpp_newton, optpp_fd_newton,
optpp_baq_newton, optpp_ba_newton, optpp_bcq_newton, optpp_bcg_new
optpp_bc_newton, optpp_bc_ellipsoid, optpp_pds, optpp_test_new,
sgopt_pga_real, sgopt_pga_int, sgopt_coord_ps, sgopt_coord_sps,
sgopt_solis_wets, sgopt_strat_mc, nond_probability, nond_mean_value,
vector_parameter_study, list_parameter_study, centered_parameter_study,
multidim_parameter_study

The<method independent controls>  are those controls w
variety of methods. In some cases, these controls are abstraction
different implementations from one method to the next. The<method
controls>  are those controls which are only meaningful for a s
library. Referring to theIDR Input Specification File, the<method i
controls> are those controls defined externally from and prior
blocks. They are all optional. The method selection blocks are a
specifications separated by logical OR’s. The<method dependent c
those controls defined within the method selection blocks. The fo
additional detail on the method independent controls followed by
and their corresponding method dependent controls.
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Method Independent Controls

The method independent controls include a method identifier stri
interface, and responses specifications, speculative gradient sel
control, linear constraint specification, convergence tolerance spe
iteration and function evaluation limits. While each of these contr
method, the controls are valid for enough methods that it was re
of the method dependent blocks and consolidate the specificatio

The method identifier string is supplied withid_method and is used
identifier string for use with strategy specifications. It is appropria
identifier string if only one method is included in the input file ansin
the selected strategy, since the binding of a strategy to a method
case.

The interface_pointer , variables_pointer , andrespons
specifications in the method keyword provide strings for cross-re
id_interface , id_variables , andid_responses  string in
interface, variables, and responses keyword specifications. Thes
specifications will be used by a particular method for its mapping
responses through an interface. If a pointer string is specified an
available, an error message will be printed. If no pointer string is
specification parsed will be used. It is appropriate to omit this cro
the relationships are unambiguous due to the presence of only on
method specification is responsible for cross-referencing with the
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responses specifications, identification of methods at the strateg
to completely specify all of the object interrelationships.

When performing gradient-based optimization in parallel,speculative
be selected to address the load imbalance that can occur betwe
line search phases. In a typical synchronous analysis, the line s
primarily of evaluating the objective function and any constraints
testing the trial point for a sufficient decrease in the objective fun
constraint violation. If a sufficient decrease is not observed, then
trial points may be attempted in series. However, if the trial point
search phase is complete and the gradient evaluation phase beg
gradient information associated with a given line search trial poin
additional coarse grained parallelism can be introduced during a
This is achieved by computing the gradient information, either by
analytically, in parallel, at the same time as the line search phas
values. This balances the total amount of computation to be per
point and allows for efficient utilization of multiple processors. W
work performed will generally increase (since some speculative g
when a trial point is rejected in the line search phase), the run tim
(since gradient evaluations needed at the start of each new optim
performed in parallel during the line search phase). Refer to[Byrd, R.H
and Schultz, G.A., 1988] for additional details. Thespeculative  
implemented for the gradient-based optimizers in the DOT, NPSO
and it can be used withdakota numerical  or analytic  gradien
responses specification (seeGradient specification). It should not be
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vendor numerical  gradients since vendor internal finite differe
not been modified for this purpose. In full-Newton approaches, t
computed speculatively.

Output verbosity control is specified withoutput  followed by eithe
quiet . This control is mapped into each iterator to manage the 
returned to the user during the course of the iteration. Different i
control in slightly different ways, however the meaning is consist

Linear constraint coefficients can be supplied with thelinear_constra
specification. While many of DAKOTA’s optimizers will eventually
handling of linear constraints, currently only the NPSOL library su
all other optimizers, linear constraints should be included within 
num_nonlinear_constraints  count and returned on every f
For NPSOL, linear constraints need not be computed by the use
function evaluation; rather the coefficients of the linear constrain
NPSOL at startup, allowing NPSOL to track the linear constraint
linear constraints are those constraints that are linear in thedesign var

3x 1 - 4x 2 ≤ 0.5
x1 + x 2 ≥ 2.0

which is not to be confused with something like
σ( X) - σfail ≤ 0

which is linear in a response quantity, but the response quantity 
function of the design variables. For the linear constraints above
appear as:

linear_constraints = 3.0, -4.0, -0.5, -1.0, -1.0, 2.0
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where the list in divided into individual constraints based on the 
design variables and according to the following assumed form (w
consistency with the nonlinear constraint assumed form of gi(X) ≤ 0):

a1x1 + a 2x2 + ... + a nxn + a 0 ≤ 0

Theconvergence_tolerance  specification provides a real va
termination of iteration. In most cases, it is a relative convergenc
objective function; i.e., if the change in the objective function bet
iterations divided by the previous objective function is less than t
convergence_tolerance , then this convergence criterion is s
iteration. Since no progress may be made on one iteration followe
on a subsequent iteration, some libraries require that theconvergence
be satisfied on two or more consecutive iterations prior to termin
control is most meaningful for optimization and least squares iter
implemented within the uncertainty quantification and parameter
Refer to the DOT, NPSOL, OPT++, and SGOPT specifications f
interpretation ofconvergence_tolerance  for these libraries.

Theconstraint_tolerance specification determines the max
of infeasibility that any constraint in an optimization problem may
It is specified as a positive real value. If a constraint function is gre
it is considered to be violated by the optimization algorithm. This s
control over how tightly the constraints may be satisfied at conve
However, if the value is set too small the algorithm may terminat
constraints being violated. This specification is currently meanin
DOT constrained optimizers.
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Themax_iterations  andmax_function_evaluations  con
integer limits for the maximum number of iterations and maximu
evaluations, respectively. The difference between an iteration an
that a function evaluation involves a single parameter to respons
interface, whereas an iteration involves a complete cycle of com
iterator. Thus, an iteration generally involves multiple function ev
descent direction and line search computations in gradient-based
and multiple offset evaluations in nongradient-based optimizatio
not currently implemented within the uncertainty quantification a
iterator branches, and in the case of optimization and least squa
capture function evaluations that occur as part of themethod_source
difference routine (since these additional evaluations are intentio
iterators). Table 34 provides the specification detail for the meth

Table 34 Specification detail for the method independent cont

Descriptio
n

Specification Sample Status Default

Method set
identifier

[id_method =
<STRING>]

id_method =
‘NLP1’

Optional strategy
usage of last
method
parsed

Interface
pointer

[interface_pointe
r = <STRING>]

interface_point
er = ‘I1’

Optional method
usage of last
interface
parsed
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Variables
pointer

[variables_point
er =
<STRING>]

variables_poin
ter = ‘V1’

Optional method
usage of last
variables
parsed

Responses
pointer

[responses_point
er =
<STRING>]

responses_poi
nter = ‘R1’

Optional method
usage of last
responses
parsed

Speculative
gradients
and
Hessians

[speculative] speculative Optional standard
gradients
and
Hessians

Output
verbosity

[{output}
{verbose} |
{quiet}]

output verbose Optional
group

quiet

Linear
constraints

[linear_constrain
ts = <LISTof>
<REAL>]

linear_constrai
nts = 1.0, 2.0,
3.0

Optional no linear
constraints

Constraint
tolerance

[constraint_
tolerance =
<REAL>

constraint_
tolerance =
1.e-4

Optional Optimizatio
n code
dependent

Convergen
ce
tolerance

[convergence_
tolerance =
<REAL>]

convergence_
tolerance =
1.e-5

Optional 1.e-4

Maximum
iterations

[max_iterations
= <INTEGER>]

max_iterations
= 10

Optional 100

Table 34 Specification detail for the method independent cont

Descriptio
n

Specification Sample Status Default
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Developer’s notes: defaults for method independent and method dependent controls
DataMethod.C.

Maximum
function
evaluations

[max_function_
evaluations =
<INTEGER>]

max_function_
evaluations
=200

Optional 1000

Table 34 Specification detail for the method independent cont

Descriptio
n

Specification Sample Status Default
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DOT Methods

The DOT library[Vanderplaats Research and Development, 1995 c
programming optimizers, specifically the Broyden-Fletcher-Gold
dot_bfgs  method) and Fletcher-Reeves conjugate gradient (D
method) methods for unconstrained optimization, and the modifi
directions (Dakota’sdot_mmfd  method), sequential linear progra
dot_slp method), and sequential quadratic programming (Dakod
methods for constrained optimization. DAKOTA implements the 
DOTOptimizer  class.

Method independent controls

The method independent controls formax_iterations  and
max_function_evaluations  limit the number of major iterat
of function evaluations that can be performed during a DOT opti
convergence_tolerance  control defines the threshold value
the objective function that indicates convergence. This converge
satisfied for two consecutive iterations before DOT will terminate
constraint_tolerance specification defines how tightly cons
be satisfied at convergence. The default value for DOT constrain
Extremely small values forconstraint_tolerance  may not be
output  verbosity specification controls the amount of informatio
thequiet  setting results in header information, final results, and
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constraint, and parameter information on each iteration; whereave
adds additional information on gradients, search direction, one-di
and parameter scaling factors. DOT contains no parallel algorith
take advantage of asynchronous evaluations. However, ifnumerical_g
with method_source dakota  is specified, then anasynchronou
specification will trigger the use of asynchronous evaluations for
function evaluations. In addition, ifspeculative is specified, then
numerical or analytic gradients) will be computed on each lin
order to balance the load and lower the total run time in parallel 
Lastly, specialized handling oflinear_constraints  is not supp
linear constraints should be included within thenum_nonlinear_cons
count and returned on every function evaluation. Specification d
independent controls is provided in Table 34.

Developer’s notes:max_iterations , max_function_evaluations , convergen
output verbosity are implemented withinDOTOptimizer as follows:max_iterations
ITMAX parameter within itsIPRM array;max_function_evaluations  is impleme
DOTOptimizer::find_optimum  loop since there is no DOT parameter equivalent;conver
is mapped into DOT’sDELOBJparameter (the relative convergence tolerance) withinR
verbosity is mapped into DOT’sIPRINT  parameter within its function call parameter 
quiet:IPRINT = 3). Refer to[Vanderplaats Research and Development, 1995]for infor
and the DOT function call parameter list.

Method dependent controls

DOT’s only method dependent control isoptimization_type  wh
minimize  or maximize . DOT has the only methods within DAK
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this control; to convert a maximization problem into the minimiza
assumed by other methods, simply change the sign on the object
by -1). Table 35 provides the specification detail for the DOT me
dependent controls.

Developer’s notes:optimization_type  is mapped into DOT’sMINMAX parameter w
parameter list.

Table 35 Specification detail for the DOT methods

Description Specification Sample Status Default

DOT method ( {dot_bfgs} ... ) |
( {dot_frcg} ... ) |
( {dot_mmfd} ... )
| ( {dot_slp} ... ) |
( {dot_sqp} ... )

dot_sqp Required
group

N/A

Optimization
type

[{optimization_ty
pe} {minimize} |
{maximize}]

optimization_
type,
minimize

Optional
group

minimize
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NPSOL Method

The NPSOL library[Gill, P.E., Murray, W., Saunders, M.A., and Wr
contains a sequential quadratic programming (SQP) implementa
method). SQP is a nonlinear programming optimizer for constra
DAKOTA implements the NPSOL library within theNPSOLOptimize

Method independent controls

The method independent controls formax_iterations  and
max_function_evaluations  limit the number of major SQP
number of function evaluations that can be performed during an
Theconvergence_tolerance control defines NPSOL’s interna
which is used in evaluating if an iterate satisfies the first-order Kuh
a minimum. The magnitude ofconvergence_tolerance  approx
the number of significant digits of accuracy desired in the final o
convergence_tolerance = 1.e-6  will result in approximat
accuracy in the final objective function). Theconstraint_tolerance
defines how tightly the constraint functions are satisfied at conver
is dependent upon the machine precision of the platform in use,
order of1.e-8  for double precision computations. Extremely sm
constraint_tolerance  may not be attainable. Theoutput  ve
controls the amount of information generated at each major SQP
setting results in only one line of diagnostic output for each majo



DAK 277

D
C

S

D

In

C

tional information on
teration.

tage of asynchronous
urce dakota
the use of
ations. An important
 searches depending on

OL is placed in
o 3) and it uses a
e user-supplied gradients
e selected with
rences internally and
es that finite differencing
ns of this are: (1)
hod_source
ion is unnecessary
d line search in user-
cessor execution.
L, and optimization

or load balanced
l operation.

ts with the
fficients of the linear
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - NPSOL Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
final optimization solution, whereas theverbose  setting adds addi
the objective function, constraints, and variables at each major i

NPSOL is not a parallel algorithm and cannot directly take advan
evaluations. However, ifnumerical_gradients  with method_so
is specified, anasynchronous  interface specification will trigger 
asynchronous evaluations for the finite difference function evalu
related observation is the fact that NPSOL uses two different line
how gradients are computed. For eitheranalytic_gradients  or
numerical_gradients  with method_source dakota , NPS
user-supplied gradient mode (NPSOL’s “Derivative Level” is set t
gradient-based line search (presumably since it assumes that th
are inexpensive). On the other hand, ifnumerical_gradients  ar
method_source vendor , then NPSOL is computing finite diffe
it will use a value-based line search (presumably since it assum
on each line search evaluation is too expensive). The ramificatio
performance will vary betweenmethod_source dakota  andmet
vendor  for numerical_gradients , and (2) gradient speculat
when performing optimization in parallel since the gradient-base
supplied gradient mode is already load balanced for multiple pro
Therefore, aspeculative  specification will be ignored by NPSO
with numerical gradients should selectmethod_source dakota  f
parallel operation andmethod_source vendor  for efficient seria

Lastly, NPSOL supports specialized handling of linear constrain
linear_constraints  list specification. By specifying the coe
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constraints, this information can be provided to NPSOL at initiali
internally, removing the need for the user to provide the values of
every function evaluation. Refer toMethod Independent Controls fo
information and to Table 34 for method independent control spe

Developer’s notes:max_iterations , max_function_evaluations , convergen
output  verbosity are implemented withinNPSOLOptimizer as follows:max_iteration
NPSOL’s“Major Iteration Limit”  parameter using itsNPOPTN routine;
max_function_evaluations is implemented directly inNPSOLOptimizer’s evalu
is no NPSOL parameter equivalent;convergence_tolerance  is mapped into NPS
Tolerance”  parameter using the NPOPTN routine;output  verbosity is mapped into
Print Level”  parameter using the NPOPTN routine (verbose : Major Print Level
Major Print Level  = 10). Refer to[Gill, P.E., Murray, W., Saunders, M.A., and W
information on NPSOL’s optional input parameters and the NPOPTN subroutine.

Method dependent controls

NPSOL’s method dependent controls areverify_level , function_
andlinesearch_tolerance . Theverify_level  control inst
perform finite difference verifications on user-supplied gradient c
function_precision control provides NPSOL an estimate of
the problem functions can be computed. This is used to prevent
distinguish between function values that differ by less than the in
calculation. And thelinesearch_tolerance  setting controls th
line search. The smaller the value (between 0 and 1), the more a
attempt to compute a precise minimum along the search directio
specification detail for the NPSOL SQP method and its method 
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Developer’s notes:verify_level , function_precision , andlinesearch_tolera
into NPSOL’s“Verify Level” , “Function Precision”  and“Linesearch Tole
parameters, respectively, using NPSOL’sNPOPTNroutine. Refer to[Gill, P.E., Murray, W
Wright, M.H., 1986] for additional information on these controls.

Table 36 Specification detail for the NPSOL SQP method

Description Specification Sample Status Default

NPSOL’s
SQP method

( {npsol_sqp} ... ) npsol_sqp Required
group

N/A

Verify level [verify_level =
<INTEGER>]

verify_level
= -1

Optional -1 (no gradient
verification)

Function
precision

[function_precisi
on = <REAL>]

function_pre
cision = 1.e-6

Optional 1.e-10

Line search
tolerance

[linesearch_toler
ance = <REAL>]

linesearch_to
lerance = 0.4

Optional 0.9 (inaccurate
line search)
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OPT++ Methods

The OPT++ library[Meza, J.C., 1994] contains primarily nonlinear
optimizers for unconstrained minimization: Polak-Ribiere conjuga
optpp_cg  method), quasi-Newton, barrier function quasi-Newto
constrained quasi-Newton (DAKOTA’soptpp_q_newton , optpp_b
andoptpp_bcq_newton  methods), Gauss-Newton and bound 
Newton (DAKOTA’soptpp_g_newton andoptpp_bcg_newton
DAKOTA’s nonlinear least squares branch), full Newton, barrier fu
bound constrained full Newton (DAKOTA’soptpp_newton , optpp_
andoptpp_bc_newton  methods), finite difference Newton (DA
optpp_fd_newton  method), and bound constrained ellipsoid (
optpp_bc_ellipsoid method). The library also contains a dire
PDS (parallel direct search, DAKOTA’soptpp_pds  method), and a
for new algorithm testing (DAKOTA’soptpp_test_new  method).
implements the OPT++ library within theSNLLOptimizer class, whe
Sandia National Laboratories - Livermore.

Method independent controls

The method independent controls formax_iterations  and
max_function_evaluations  limit the number of major iterat
of function evaluations that can be performed during an OPT++ 
convergence_tolerance  control defines the threshold value
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the objective function that indicates convergence. Theoutput  verbo
controls the amount of information generated by OPT++: thequiet  s
to turning OPT++’s internal debug mode off, whereas theverbose  s
mode on. OPT++’s gradient-based methods are not parallel algor
take advantage of asynchronous evaluations. However, ifnumerical_g
with method_source dakota  is specified, anasynchronous  i
specification will trigger the use of asynchronous evaluations for
gradient computations. OPT++’s nongradient-based PDS metho
asynchronous evaluations; however, this capability has not been
DAKOTA V1.1.

Thespeculative  specification enables speculative computatio
gradient information, where applicable, for load balancing purpo
applicable to the computation of gradient information in cases whtr
value_based_line_search  methods can be applied. See th
dependent controls for a description ofvalue_based_line_search
trust_region  methods. Thespeculative  specification must 
conjunction withdakota numerical  or analytic  gradients. Th
ignored and a warning message is printed for gradient computat
gradient_based_line_search  is used, or when theoptpp_ba
optpp_baq_newton  or optpp_bc_ellipsoid  methods are u
specification can also be applied to the full Newton methods, wh
of analytic hessians,  or for theoptpp_fd_newton  metho
specification is ignored for theoptpp_g_newton  Hessian comput
approximates the Hessian from function and gradient values.
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Lastly, specialized handling oflinear_constraints  is not supp
many OPT++ methods must be unconstrained and some can ha
Specification detail for these method independent controls is pro

Developer’s notes:within theSNLLOptimizer  class,max_iterations , max_function
andconvergence_tolerance  are set using OPT++’sSetMaxIter , SetMaxFeval
member functions, respectively;output  verbosity is used to toggle OPT++’s debug m
member function. Refer to[Meza, J.C., 1994] and to the OPT++ source in the Dakota
directory for information on OPT++ class member functions.

Method dependent controls

OPT++’s method dependent controls aremax_step , gradient_tolera
search_method , initial_radius , andsearch_scheme_size
max_step  control specifies the maximum step that can be take
change in the objective function iterate (e.g., limiting the Newton
current gradient and Hessian information). It is equivalent to a m
trust region size. Thegradient_tolerance control defines the t
L2 norm of the objective function gradient that indicates converge
minimum (no active bound constraints). Thegradient_tolerance
for all gradient-based optimizers.

Thesearch_method  control is defined for all Newton-based op
select betweentrust_region, gradient_based_line_search,
value_based_line_search methods. Themax_step  control
wherever one of the abovesearch_method  techniques is used. T
search method is the default for all methods except ellipsoid, ba
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constrained methods. The ellipsoid and barrier methods use bui
and thus, the overallsearch_method  control does not apply. The
techniques for the bound-constrained methods is an open resear
line_search method is the default. Theinitial_radius contr
ellipsoid method to specify the initial radius of the ellipsoid, and
search_scheme_size is defined for the PDS method to specif
tospeculative gradient specification be used in the direct search 

Table 37, Table 38, Table 39, Table 40, Table 41, and Table 42 p
detail for the OPT++ methods and their method dependent cont
OPT++ conjugate gradient method specification. Table 38 provid
unconstrained and bound-constrained Newton-based methods. T
for barrier Newton methods. Table 40 provides the detail for the 
ellipsoid method. Table 41 provides the detail for the parallel dire
Table 42 provides the specification detail for OPT++ new metho

Table 37 Specification detail for the OPT++ conjugate gradien

Description Specification Sample Status Default

OPT++’s
conjugate
gradient
method

( {optpp_cg} ... ) optpp_cg Required
group

N/A

Maximum
step size

[max_step =
<REAL>]

max_step = 1000. Optional 1000.

Gradient
tolerance

[gradient_toleran
ce = <REAL>]

gradient_tolerance
= 0.0001

Optional 0.0001
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Table 38 Specification detail for unconstrained and bound-con
Newton-based OPT++ methods

Description Specification Sample Status Default

OPT++
Newton-
based
methods

( {optpp_q_newton} ... ) |
( {optpp_g_newton} ... ) |
( {optpp_newton} ... ) |
( {optpp_fd_newton} ... ) |
( {optpp_bc_newton} ... ) | (
{optpp_bcq_newton} ... ) | (
{optpp_bcg_newton} ... )

optpp_q_
newton

Required
group

N/A

Search
method

[{search_method}
{value_based_line_search}|
{gradient_based_line_searh}|
{trust_region}]

search_m
ethod,
value_ba
sed_line_
search

Optional
group

line_sear
ch for bc
methods,
trust_regi
on for
others

Maximum
step size

[max_step = <REAL>] max_step
= 1000.0

Optional 1000.

Gradient
tolerance

[gradient_tolerance =
<REAL>]

gradient_
tolerance
= 0.0001

Optional 0.0001
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Table 39 Specification detail for barrier-constrained Newton O
methods

Description Specification Sample Status Default

OPT++
barrier
Newton
methods

( {optpp_ba_newton} ... ) | (
{optpp_baq_newton} ... )

optpp_ba
_newton

Required
group

N/A

Gradient
tolerance

[gradient_tolerance =
<REAL>]

gradient_
tolerance
= 0.0001

Optional 0.0001

Table 40 Specification detail for the OPT++ bound constraine
method

Description Specification Sample Status Default

OPT++’s
bound
constrained
ellipsoid

( {optpp_bc_ellipsoid}
... )

optpp_bc_elli
psoid

Required
group

N/A

Initial
radius

[initial_radius =
<REAL>]

initial_radius
= 1000.0

Optional 1000.

Maximum
step size

[max_step =
<REAL>]

max_step =
1000.

Optional 1000.

Gradient
tolerance

[gradient_tolerance =
<REAL>]

gradient_toler
ance = 0.0001

Optional 0.0001
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Developer’s notes: max_step , gradient_tolerance , search_method , initial_r
search_scheme_size  are set using OPT++’sSetMaxStep , SetGradTol , SetSea
SetInitialEllipsoid , andSetSSS  member functions, respectively. Refer to[Mez
OPT++ source in the Dakota/VendorOptimizers/opt++ directory for information on O

Table 41 Specification detail for the OPT++ PDS method

Description Specification Sample Status Default

OPT++’s
Parallel
Direct Search

( {optpp_pds} ... ) optpp_pds Required
group

N/A

Search
scheme size

[search_scheme_si
ze = <INTEGER>]

search_scheme
_size = 32

Optional 32

Table 42 Specification detail for OPT++ new method testing

Description Specification Sample Status Default

Placeholder for
new OPT++
method testing

{optpp_test_new} optpp_test_
new

Required N/A
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SGOPT Methods

The SGOPT (Stochastic Global OPTimization) library[Hart, W.E., 19
variety of global optimization algorithms, with an emphasis on st
SGOPT currently includes the following global optimization meth
(sgopt_pga_real , sgopt_pga_int ) and stratified Monte Car
(sgopt_strat_mc ). Evolutionary pattern search algorithms, sim
search, and multistart local search (to become part of DAKOTA’scoup
multi_level  strategy) are global methods which are under de
available in DAKOTA V1.0. Additionally, SGOPT includes severa
algorithms such as Solis-Wets (sgopt_solis_wets ) and determi
coordinate pattern search (sgopt_coord_ps  andsgopt_coord_sp
implements the SGOPT library within theSGOPTOptimizer class.

Developer’s notes: To specify method controls and options, DAKOTA’sSGOPTOptimize
SGOPT method interface objects (e.g.,IPGAreal is an interface class to thePGAreal optim
of these interface classes is to simplify the communication of information from drive
the SGOPT optimizer classes. This information transfer occurs through the passing
member function available in the interface classes. For example, the command

baseOptimizerInterface->process(“debug”, “5”);
uses a pointer to an optimizer interface object (baseOptimizerInterface ) to set th
within the interface object’s corresponding optimizer class to the integer 5.

Method independent controls

The method independent controls formax_iterations  and
max_function_evaluations  limit the number of major iterat
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of function evaluations that can be performed during an SGOPT
convergence_tolerance  control defines the threshold value
the objective function that indicates convergence. Theoutput  verbo
controls the amount of information generated by SGOPT: thequiet s
to a low level of diagnostics reported only on those iterations for
the objective is observed, whereas theverbose  setting correspond
diagnostics reported on every iteration. Many of SGOPT’s nongr
have independent function evaluations that can directly take adv
parallel capabilities. The following methods currently support con
evaluations:sgopt_pga_real , sgopt_pga_int , sgopt_strat_m
sgopt_coord_ps , andsgopt_coord_sps . This methods auto
asynchronous logic when utilizing multiple processors of when s
asynchronous  interface. Note that parallel usage ofsgopt_coord_
sgopt_coord_sps  overrides any setting forexploratory_moves
Coordinate pattern search (CPS)), since thestandard , offset , b
biased_best_first  settings only involve relevant distinctions
operation. Lastly, neitherspeculative  gradients nor specialized
linear_constraints  are supported with SGOPT since SGO
unconstrained and nongradient-based. Specification detail for m
controls is provided in Table 34.

Developer’s notes:max_iterations , max_function_evaluations , convergen
output  verbosity are implemented withinSGOPTOptimizer as follows:max_iteration
SGOPT’smax_iters  data attribute using theprocess command available in SGOPT’
max_function_evaluations is mapped intomax_neval usingprocess; converg
mapped intoftol usingprocess; output verbosity is mapped intodebug anddynamic
process(verbose : thedebug level is set to 5 and thedynamic_debug flag is not set;q
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is set to 0 and thedynamic_debug flag is turned on). Thedynamic_debug flag deter
reported on every iteration (off) or only on those iterations for which improvement in
SGOPT methods assume asynchronous operations whenever the algorithm has in
be performed simultaneously (implicit parallelism). Therefore, theevaluations asynchro
not mapped into the method (exception:emcase  is set to 3 usingprocess for asynchrono
searches), rather it is used inSGOPTRealApplication andSGOPTIntApplication  to con
asynchronous evaluation request from the method is honored by the model. Refer[Hart,
additional information on SGOPT objects and controls.

Method dependent controls

solution_accuracy andmax_cpu_time are method depende
defined for all SGOPT methods. Solution accuracy defines a con
which the optimizer will terminate if it finds an objective function 
specified accuracy. Note that the default of 1.e-5 should be over
applications where it could cause premature termination. The ma
is another convergence criterion in which the optimizer will termi
seconds exceeds the specified limit. Table 43 provides the spec
method dependent controls.

Table 43 Specification detail for SGOPT method dependent c

Description Specification Sample Status Default

Solution
Accuracy

[solution_accuracy =
<REAL>]

solution_accuracy =
0.0

Optional 1.e-5

Maximum
CPU Time

[max_cpu_time =
<REAL>]

max_cpu_time =
86400.0

Optional No limit
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Developer’s notes:solution_accuracy  andmax_cpu_time  are passed into SGO
process with identifiers ofacc  andtime , respectively.

Each SGOPT method supplements the settings of Table 43 with
specific to its particular class of method. Genetic algorithms hav
random seed, population size, selection pressure, replacement,
Coordinate pattern search algorithms have additional settings fo
pattern search only), expansion policy, number of successes be
and contraction exponents, initial and threshold deltas, and expl
Solis-Wets has additional settings for random seed, number of su
number of failures before contraction, and initial and threshold rh
stratified Monte Carlo has additional settings for random seed a
partitioning.

Genetic algorithms (GAs)

DAKOTA currently implements two types of GAs: a real-valued G
(sgopt_pga_real ) and an integer-valued GA (sgopt_pga_int )
these two methods are the same, although their crossover and m
slight differences. Table 44 provides the specification detail for th
common between the two GAs.

Table 44 Specification detail for the SGOPT GA methods

Description Specification Sample Status Default

GA
methods

( {sgopt_pga_real} ... )
| ( {sgopt_pga_int} ... )

sgopt_pga_real Required
group

N/A
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The randomseed  control provides a mechanism for making a sto
repeatable. For example, even though many of the processes w
have random character, the use of the same random seed in ide
identical results. This, of course, implies that generating meanin
performance will require the user to vary the random seed on m
population_size  control specifies how many individuals will 
population. Theselection_pressure  controls how strongly di
are weighted in the process of selecting “parents” for crossover.
replacement_type controls how current populations and newly
are combined into a new population.

Random
seed

[seed = <INTEGER>] seed = 1 Optional 1

population
size

[population_size =
<INTEGER>]

population_size
= 10

Optional 100

selection
pressure

[ {selection_pressure}
{rank = <REAL>} |
{proportional} ]

selection_press
ure, rank = 2.0

Optional
group

proport
ional

replacement
type

[ {replacement_type}
{random} | {CHC} |
{elitist}
[new_solutions_gener
ated = <INTEGER>] ]

replacement_ty
pe elitist,
new_solutions_
generated = 5

Optional
group

???

Table 44 Specification detail for the SGOPT GA methods

Description Specification Sample Status Default
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Table 45 and Table 46 show the crossover and mutation controls
sgopt_pga_real  andsgopt_pga_int .

Table 45 Specification detail for SGOPT real GA crossover an

Description Specification Sample Status Default

crossover
type

[ {crossover_type}
{two_point} |
{mid_point} |
{blend} | {uniform}
[crossover_rate =
<REAL>] ]

crossover_type
mid_point,
crossover_rate
= 0.6

Optional
group

two_point
crossover
with rate
= 0.8

mutation
type

[ {mutation_type} (
{normal}
[std_deviation =
<REAL>] ) |
{interval} | {cauchy}
[dimension_rate =
<REAL>]
[population_rate =
<REAL>] ]

mutation_type
normal,
dimension_rate
= 0.8

Optional
group

???

Table 46 Specification detail for SGOPT integer GA crossover
mutation

Description Specification Sample Status Default

crossover
type

[ {crossover_type}
{two_point} |
{uniform}
[crossover_rate =
<REAL>] ]

crossover_type
uniform,
crossover_rate
= 0.6

Optional
group

two_point
crossover
with rate
= 0.8
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Thecrossover_type  controls what approach is employed for 
genetic information to create offspring, and thecrossover_rate  s
probability of a crossover operation being performed to generate
mutation_type  controls what approach is employed in random
variables within the GA population. The associatedpopulation_rate
probability of mutation being performed on a particular individua
performed on an individual, thedimension_rate  is used to gove
mutation per design variable for the individual.

Coordinate pattern search (CPS)

DAKOTA implements two types of CPS: a deterministic CPS (sgopt_
a stochastic CPS (sgopt_coord_sps ). Their controls are identic
stochastic CPS specification contains a random seed whereas t
specification does not. Table 47 provides the specification detail f
and their method dependent controls.

mutation
type

[ {mutation_type}
{offset} | {interval}
[dimension_rate =
<REAL>]
[population_rate =
<REAL>] ]

mutation_type
offset,
dimension_rate
= 0.8

Optional
group

???

Table 46 Specification detail for SGOPT integer GA crossover
mutation

Description Specification Sample Status Default
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As described previously, the randomseed  is used to make stochas
repeatable. Theexpansion_policy  setting specifies how many

Table 47 Specification detail for the SGOPT CPS methods

Description Specification Sample Status Default

CPS
methods

( {sgopt_coord_ps} ... ) |
( {sgopt_coord_sps} ... )

sgopt_coord
_ps

Required
group

N/A

Random
seed
(stochastic
only)

[seed = <INTEGER>] seed = 1 Optional 1

expansion
policy

[ {expansion_policy}
{unlimited} | {once} ]

expansion_p
olicy once

Optional
group

unlimited

expand after
success

[expand_after_success =
<INTEGER>]

expand_after
_success = 2

Optional 1

expansion
exponent

[expansion_exponent =
<INTEGER>]

expansion_e
xponent = 1

Optional 0

contraction
exponent

[contraction_exponent =
<INTEGER>]

contraction_
exponent = 1

Optional -1

initial delta {initial_delta =
<REAL>}

initial_delta
= 1.0

Required N/A

threshold
delta

{threshold_delta =
<REAL>}

threshold_de
lta = 1.e-6

Required N/A

exploratory
moves

[ {exploratory_moves}
{standard} | {offset} |
{best_first} |
{biased_best_first} ]

exploratory_
moves
best_first

Optional
group

standard
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delta can occur (eitheronce  or unlimited  times). Theexpand_aft
control specifies how many successful objective function improve
specific delta prior to expansion of the delta. Theexpansion_expone
contraction_exponent  specify the exponents used to evalu
contraction factors, respectively. Theinitial_delta  andthresho
specify the starting delta value and the minimum value of delta t
terminating, respectively. Lastly, theexploratory_moves  setting

• the evaluations about a current point are ordered. Theoffset  case
the2n  offsets in order whereas thestandard , best_first , an
biased_best_first  examine each of then dimensions in ord
dimension orderings are identical in the deterministic case; th
relevant for stochastic CPS in which the orderings are shuffled
dimension (the order of then dimensions is shuffled in thebest_firs
biased_best_first  cases, and the order of the2n  evaluation
offset  case).

• whether or not the algorithm immediately selects the first impr
(offset , best_first , andbiased_best_first ) or waits 
improving point found from all new design points (standard  as w
case).

• whether the algorithm uses a bias to guide the algorithm in a di
points have previously been found (biased_best_first ).

It is important to emphasize that the same sets of evaluation poi
sgopt_coord_ps  andsgopt_coord_sps  methods; it is only t
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evaluations that can differ due to the shuffling in the stochastic c
parallel case where the ordering of the evaluations is unimportan
performed simultaneously),sgopt_coord_ps  andsgopt_coord_s
essentially identical.

Solis-Wets

DAKOTA’s implementation of SGOPT also contains the Solis-We
provides the specification detail for this method and its method d

As for other SGOPT methods, the randomseed is used to make sto
repeatable. Similar to CPS,expand_after_success  specifies h

Table 48 Specification detail for the SGOPT Solis-Wets metho

Description Specification Sample Status Default

Solis-Wets
method

( {sgopt_solis_wets}
... )

sgopt_solis_
wets

Required
group

N/A

Random
seed

[seed = <INTEGER>] seed = 1 Optional 1

expand after
success

[expand_after_success
= <INTEGER>]

expand_after
_success = 2

Optional 5

contract
after failure

[contract_after_failure
= <INTEGER>]

contract_after
_failure = 2

Optional 3

initial ρ [initial_rho =
<REAL>]

initial_rho =
1.0

Optional 0.5

thresholdρ [threshold_rho =
<REAL>]

threshold_rho
= 1.e-6

Optional 0.00001
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cycles must occur with a specificρ prior to expansion ofρ. And
contract_after_failure specifies how many unsuccessful
a specificρ prior to contraction ofρ. Theinitial_rho  andthresho
settings specify the startingρ value and the minimum value ofρ that w
terminating, respectively.

Stratified Monte Carlo

Lastly, DAKOTA’s implementation of SGOPT contains a stratified
algorithm. Table 49 provides the specification detail for this meth
dependent controls.

As for other SGOPT methods, the randomseed is used to make sto
repeatable. And thepartitions  list is used to specify the numbe
design variable. For example,partitions = 2, 4, 3  specifies
first design variable, 4 partitions in the second design variable, an
design variable.

Table 49 Specification detail for the SGOPT sMC method

Description Specification Sample Status Default

sMC
method

( {sgopt_strat_mc} ... ) sgopt_strat_
mc

Required
group

N/A

Random
seed

[seed = <INTEGER>] seed = 1 Optional 1

partitions [partitions = <LISTof>
<INTEGER>]

partitions =
2, 4, 3

Optional No
partitioning
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Nondeterministic Methods

DAKOTA’s nondeterministic branch does not currently make use
independent controls formax_iterations , max_function_evalua
convergence_tolerance , speculative  gradients,output  v
linear_constraints . As such, the nondeterministic branch d
follows is limited to the method dependent controls for the Monte
mean value methods.

Monte Carlo Probability Method

The Monte Carlo probability iterator is selected using thenond_proba
specification. This iterator performs sampling for different param
specified parameter distribution in order to assess the distribution
Probability of event occurrence (e.g., failure) is then assessed b
results against response thresholds. DAKOTA currently implemen
within theNonDProbability  class.

The number of samples to be evaluated is selected with theobservatio
specification. Theseed  integer specification specifies the seed fo
generator which is used to make Monte Carlo studies repeatable
can be selected with pure Monte Carlo (by specifyingsample_type r
latin hypercube Monte Carlo (by specifyingsample_type lhs ). L
response_thresholds  specification supplies a list ofm real valu
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with them response functions being computed. Table 50 provide
for the Monte Carlo probability method.

Mean Value Method

The mean value method is selected using thenond_mean_value  sp
iterator computes approximate response function distribution sta
parameter distributions. The mean value method is a direct meth
any random sampling.

Theresponse_filenames  specification supplies a list of file n
response data files which the mean value algorithm will process
probability.

Table 50 Specification detail for the Monte Carlo probability m

Description Specification Sample Status Default

MonteCarlo
probability

( {nond_probability}
... )

nond_probabili
ty

Required
group

N/A

observations {observations =
<INTEGER>}

observations =
100

Required N/A

random seed [seed =
<INTEGER>]

seed = 1 Optional 1

sample type {sample_type}
{random} | {lhs}

sample_type,
lhs

Required N/A

response_th
resholds

{response_thresholds
= <LISTof>
<REAL>}

response_thres
holds = 1.0, 2.0

Required N/A
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The specifics of this computation within the mean value impleme
application-dependent, but generalization is a pending developm
provides the specification detail for the mean value method.

Table 51 Specification detail for the mean value method

Description Specification Sample Status Default

Mean value
method

( {nond_mean_value}
... )

nond_mean_va
lue

Required
group

N/A

response
filenames

{response_filenames
= <LISTof>
<STRING>}

response_filena
mes = ‘r1.dat’,
‘r2.dat’

Required N/A



DAK thods 301

D
C

S

D

In

C

at a selection of points in
r, a list, a set of centered
s all of the parameter

of the method
tions ,
erbosity, or
thods is consistent in
ited to the method

sional parameter study

meter studies are
ns focus on the

at selected intervals along
nate parameter studies (to
ple coordinate vector
ensional vector). This
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Parameter Study Me

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Parameter Study Methods

DAKOTA’s parameter study methods compute response data sets
the parameter space. These points may be specified as a vecto
vectors, or an n-dimensional hyper-surface. DAKOTA implement
study methods within theParamStudy class.

DAKOTA’s parameter study methods do not currently make use 
independent controls formax_iterations , max_function_evalua
convergence_tolerance , speculative  gradients,output  v
linear_constraints . Since each of the parameter study me
this way, the parameter study documentation which follows is lim
dependent controls for the vector, list, centered, and multidimen
methods.

Capability overviews and examples of the different types of para
provided inParameter Study Capabilities. The following discussio
details of command specification.

Vector Parameter Study

DAKOTA’s vector parameter study computes response data sets
a vector in parameter space. It encompasses both single-coordi
study the effect of a single variable on a response set) and multi
studies (to investigate the response variations along some n-dim
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study is selected using thevector_parameter_study  specifica
either afinal_point  or astep_vector  specification.

The vector for the study can be defined in several ways. First, afinal_p
specification, when combined with the Initial Values (seeInitial Values
an n-dimensional vector’s direction and magnitude through its st
intervals along this vector may either be specified with astep_length
num_steps  specification. In the former case, steps of equal len
are taken from the Initial Values up to (but not past) thefinal_point
terminate at the last full step which does not go beyond thefinal_poin
num_steps  case, the distance between the Initial Values and thfina
broken intonum_steps  intervals of equal length. This study star
and ends at thefinal_point , making the total number of simula
num_steps+1 . Thefinal_point  specification detail is given i

Table 52 final_point specification detail for the vector paramet

Description Specification Sample Status Default

Vector
parameter
study

(
{vector_parameter_
study} ... )

vector_para
meter_study

Required
group

N/A

Final point
with step
length or
number of
steps

( {final_point =
<LISTof><REAL>}
{step_length =
<REAL>} |
{num_steps =
<INTEGER>} )

final_point =
1.0,2.0
num_steps =
10

Required
group

N/A
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The other technique for defining a vector in the study is thestep_vecto
This parameter study starts at the Initial Values and adds the inc
step_vector to obtain new simulation points. This process is p
times, and since the Initial Values are included, the total number
equal tonum_steps+1 . Thestep_vector  specification detail is

Refer toVector Parameter Studyfor example specifications and th
that result.

List Parameter Study

DAKOTA’s list parameter study allows for evaluations at user sel
which need not be colinear or coplanar. This study is selected u
list_parameter_study  method specification followed by alist_
specification.

Table 53 step_vector specification detail for the vector parame

Description Specification Sample Status Default

Vector
parameter
study

(
{vector_parameter_
study} ... )

vector_param
eter_study

Required
group

N/A

Step vector
and number
of steps

( {step_vector =
<LISTof><REAL>}
{num_steps =
<INTEGER>} )

step_vector =
1., 1., 1.
num_steps =
10

Required
group

N/A
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The number of real values in thelist_of_points  specification m
the total number of continuous variables specified in the variable
study simply performs simulations for the first parameter set (then
followed by the next parameter set (the nextn entries), and so on, u
has been exhausted. Since the Initial Values will not be used, th
The list parameter study specification detail is given in Table 54.

The samplelist_of_points  specification shown in Table 54 w
simulations at the 4 corners of a square with edge length of 0.5 

Centered Parameter Study

DAKOTA’s centered parameter study computes response data se
one per parameter, centered about the specified Initial Values. T
investigation of function contours with respect to each paramete
vicinity of a specific point (e.g., post-optimality analysis for verifica
is selected using thecentered_parameter_study  method spe

Table 54 Specification detail for the list parameter study

Description Specification Sample Status Default

List
parameter
study

(
{list_parameter
_study} ... )

list_parameter_s
tudy

Required
group

N/A

List of
points

{list_of_points
= <LISTof>
<REAL>}

list_of_points =
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.0, 0.5

Required N/A
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by percent_delta  anddeltas_per_variable  specification
percent_delta  specifies the size of the increments in percent
deltas_per_variable specifies the number of increments pe
plus and minus directions. The centered parameter study specifi
Table 55.

Refer toCentered Parameter Study for example specifications an
evaluations that result.

Multidimensional Parameter Study

DAKOTA’s multidimensional parameter study computes respons
dimensional hypergrid of points. Each continuous variable is par
spaced intervals between its upper and lower bounds, and each
defined by the boundaries of these partitions is evaluated. This s
multidim_parameter_study  method specification followed b

Table 55 Specification detail for the centered parameter study

Description Specification Sample Status Default

Centered
parameter
study

(
{centered_parameter
_study} ... )

centered_par
ameter_study

Required
group

N/A

Interval size
in percent

{percent_delta =
<REAL>}

percent_delta
= 1.0

Required N/A

Number of
+/- deltas
per variable

{deltas_per_variable
= <INTEGER>}

deltas_per_va
riable = 5

Required N/A
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specification, where the partitions list specifies the number of pa
continuous variable. Therefore, the number of entries in the partit
the total number of continuous variables specified in the variables
Values will not be used, they need not be specified. The multidime
specification detail is given in Table 56.

Refer toMultidimensional Parameter Study for example specificat
evaluations that result.

Table 56 Specification detail for the multidimensional paramet

Description Specification Sample Status Default

Multidimensio
nal parameter
study

(
{multidim_parameter_
study} ... )

multidim_
parameter
_study

Required
group

N/A

Partitions per
variable

{partitions = <LISTof>
<INTEGER>}

partitions
= 4 2 4

Required N/A
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Distributions and Checkouts

Installation of DAKOTA can be done from a distribution file (tape
download, etc.) or a checkout from the Concurrent Version Syste

If you are extracting DAKOTA from a distribution file, first extract
(Dakota.tar.gz ) from the tape/CD/Web and move it to your in
Then the following steps are performed:

gunzip Dakota.tar.gz
tar xvf Dakota.tar

If you are accessing current files from the CVS repository, you firs
the CVS software on your workstation. You can get CVS via ano
number of sites, for instance,prep.ai.mit.edu  in directorypub/g
need to be in thedakota  developers’ group and have your$CVSRO
variable set to the repository directory where DAKOTA resides (i/u
eng_sci/CVS ). If, in addition, you are using the remote client-s
CVS, then the$CVSROOT variable needs a machine prefix (i.e.,sass2
local/eng_sci/CVS ) and the$CVS_RSH environment variable
remote shell program to use (e.g.,rsh , ssh ). The following steps ca
check out the repository:

newgrp dakota
cd $HOME
cvs checkout Dakota
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Basic Installation

Now that the DAKOTA files have been checked out or extracted,
configure and build the system using the following steps:

1) setenv DAKOTA $HOME/Dakota
2) cd $DAKOTA
3) ln -s <RogueWaveInstallationDir> rogue
4) ln -s <MPI_InstallationDir> mpi
5) configure <config_options>
6) make

Omission of step 1 is a common error; therefore it is wise to set t
in your .cshrc file. Of course,$DAKOTAdoes not have to be set to$H
one wishes a different installation location or is maintaining mult
configurations of DAKOTA code, then$DAKOTA should be set and
accordingly. This is in fact why the$DAKOTA variable exists.

The DAKOTA software relies upon the Rogue Wave Tools.h++ s
utility library for data management with vector classes, linked lists
are compiling on a Sun/Solaris host platform, this may be availa
compiler distribution. If not, you will need to purchase a license f
install it on your workstation. Since there is no standard location
Tools.h++ software, the configure fragment files assume that the
installed in the directory$DAKOTA/rogue . Step 3 creates a symb
directory to the actual Rogue Wave installation directory.

To build DAKOTA with message-passing capability for parallel pl
software must be installed on the target machine. There is no stan
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software (although/usr/local/mpi  is common). Consequently
fragment files assume that MPI is located in the directory$DAKOTA/
creates a symbolic link from this directory to the actual MPI insta

In both steps 3 and 4, the symbolic links must point to the director
Wave and MPI distributions which contains thebin , lib , andinclud

In step 5, the DAKOTA software is configured for building on spe
target platforms. In the top-level directory defined by$DAKOTA, there
calledconfigure  which is a program designed to automate mu
associated with building large suites of programs on various hard
whatconfigure  does:

• makes symbolic links so that files used for configuration can b
location

• generates Makefiles so that objects, libraries, executables and
created for specific and unique hardware platforms

• calls itself recursively so that sub-directories can also be confi

Refer toConfiguration Details and the Cygnus configure docume
docs/configure.ps ) for information on configure operations 
configure without any options will result in inclusion of all vendor p
of MPI.

In step 6, the Makefiles generated in the configure step are exec
command. Refer toMakefile Details for additional information.
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Configuration Details

The full parameter list for theconfigure  script is below:
configure hosttype [--target=target] [--srcdir=dir] [--rm]

[--site=site] [--prefix=dir] [--exec-prefix=dir]
[--program-prefix=string] [--tmpdir=dir]
[--with-package[=yes/no]] [--without-package]
[--enable-feature[=yes/no]] [--disable-feature]
[--norecursion] [--nfp] [-s] [-v] [-V | - version]
[--help]

Makefiles are custom created fromMakefile.in template files wh
“targets” that can be built for each directory. Variables that are p
dependent are stored in individual “fragment” files in the$DAKOTA/c
These fragment files are added to the custom Makefiles when u
(recursively) configure this repository with specific host, target, p
parameters.

An example configuration command for a native build on a Sun/S
SGOPT, DOT, NPSOL, and OPT++ vendor optimizer packages C
specific vendor optimizers for more info on packages) follows:

configure

NOTE: Thehosttype  and--target  parameters are not neces
system information can be acquired from your local machine. If 
running Solaris 2.5.1, then theconfig.guess script will providecon
triplet ‘sparc-sun-solaris2.5.1 ’. If you wish to supply ahos
for a Sun/Solaris system, ‘sun4sol2 ’ is preferred.
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Runningconfigure  takes a while, be patient. Verbose output w
unless the user/developer wishes to silence it by specifying the p
you wish to configure only one level/directory, please remember
--norecursion . All generatedconfig.status  files include th
default for easy Makefile regeneration.

After your configure command is completed, three files will be g
configured directory (specified by the fileconfigure.in ).

1. Makefile.${target_vendor}

The${target_vendor}  suffix will depend on the target sp
for the command above). Native builds have identical host a
If you specified a “--target=tflop ” parameter, thenMakefi
would then be created for a cross-compilation build on the S
Sandia Intel TFLOP (i.e.,janus ) target platform.

2. Makefile

This will be a symbolic link to the file mentioned above. A us
simply type “make” and the last generatedMakefile.${target_ve
will then be referenced.

3. config.status

This is a “recording” of the configuration process (i.e., what 
executed to generate the Makefile). It can be used by the cu
regenerate the configuration with the “make Makefile ” comm
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Fragment files exist so thatconfigure  can support multi-platform
DAKOTA can be configured for code development and execution
platforms :

SPARC-SUN-SOLARIS2.5.1 or higher (i.e., Sun ULTRAsparc)
MIPS-SGI-IRIX6.5 or higher (i.e., SGI Octane)
HPPA1.1-HP-HPUX9.05 or higher (i.e., HP 9000/700 series)
PENTIUM-INTEL-COUGAR or higher (i.e., Intel TFLOP supercomput

Below is a list of the fragment files used for configuring this softw
what dependent information they contain. They are listed in the 
appear in the generated Makefiles. Inclusion of these fragment fi
configure.in  file and any parameters you specify (i.e.,--with-<PA
--target=<TGT_ALIAS> ) with theconfigure  command.

• The following files contain package variables for location/defin
include, library, defines, etc.

mp-opt++
mp-npsol
mp-dot-dp
mp-dot-sp
mp-sgopt
mp-stdlib
mp-mpi
mp-bayes
mp-cluster
mp-dakota
mp-idr
mp-twafer

• The following files contain target variables that help build Mak
CCC, AR, LEX, ARCH_DEFINES, ARCH_INCLUDES, ARCH

mt-solaris
mt-irix
mt-hpux
mt-cougar
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• The following files contain host variables for administration/ma
targets (i.e., AWK, CHMOD, RM, MKDIR, CD, etc.)

mh-solaris
mh-irix
mh-hpux
mh-cougar

• The following file contains site variables and macros for overri
rules when building objects, archives, etc. It is always included
generated Makefile unless overridden by a parameter (--site=...

ms-dakota.std

Configuring with specific vendor optimizers

All of the available vendor optimizers (DOT, NPSOL, OPT++, an
configured for building by default. If the user/developer wishes to
without any of the vendor optimizer packages, he/she must speci
following parameters:--without-dot , --without-npsol , --wi
or --without-sgopt . Some examples follow:

• configure --without-npsol --without-sgopt
Configure and generate Makefiles that construct an executable using
libraries from the DOT and OPT++ optimizers only .

• configure --without-opt++
Configure and generate Makefiles that construct an executable using
libraries from the DOT, NPSOL, and SGOPT optimizers only

Each of the configured vendor optimizer packages will contain th
‘build’ directories. SeeMakefile Details for more information conce
directories and how they manage multi-platform binaries.
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Configuring with the Message Passing Interface

The Message Passing Interface (MPI) package will not be config
default unless the user configures for the Intel TFLOP target. If th
message-passing library on parallel platforms other than the Inte
memory supercomputer, then--with-mpi  must be specified. If th
the Intel TFLOP target and doesnot wish to use MPI, then--without-m
specified. Refer toMaster-slave algorithm for more information ab
within DAKOTA. Several examples follow:

• configure --target=tflop
Configure and generate Makefiles that construct an executable for the
Intel TFLOP platform using libraries from the DOT, NPSOL, SGOPT, and
OPT++ optimizers and  the MPI software package.

• configure --with-mpi
Configure and generate Makefiles that construct an executable on your
native platform (i.e., Solaris) using libraries from the DOT, NPSOL,
SGOPT and OPT++ optimizers and  the MPI software package.

• configure --target=tflop --without-mpi --without-sgopt
Configure and generate Makefiles that construct an executable for the
Intel TFLOP platform using libraries from the DOT, NPSOL and OPT++
optimizers only .
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Makefile Details

Some versions ofmake fail to build the system properly. Themake p
ccs/bin is preferred to/usr/local/bin/make on the Sun pla
often preferred on other platforms. The version ofmake invoked by de
by executing the command:

which make

If this is not the desiredmake, then the$path  environment variable
in the following:

set path = (/usr/ccs/bin $path)

As with the$DAKOTA environment variable, it may be desirable t
addition to the.cshrc  file to render the change permanent.

As stated inBasic Installation, building/compiling the system after
configuration entails invoking the command “make” from the top-lev
directory. The latestMakefile.${target_vendor} generated b
be referenced by this command (due to theMakefile  symbolic link
build directories are generated to store object/library files and bi
target platform. If you configured DAKOTA for a native build on a
build directories will all be calledsparc-sun-solaris2.5.1 . If 
DAKOTA for the Intel TFLOP platform, your build directories will 
pentium-intel-cougar .

During an initialmake process, every makefile generates depende
in the makefile’s directory prior to actually compiling the object fi
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libraries and/or executables. These dependencies are appended
makefiles and are used for managing which source files must be
header files are modified. This is needed because, while a stand
dependency of targets on source files, it does not manage the dep
header files. If a developer changes the source file dependencie
removing#include directives), a “make Makefile ” command c
a fresh makefile and then a “make” command will create an update
append the dependency list to the new makefile, and then recom
source modules.

You can remove object files, libraries, and executables from the b
“make clean ”. Theclean  target will also cause regeneration o
wish to reconfigure your DAKOTA source from scratch or regene
makefiles, “make distclean ” can be used to remove all symbo
makefiles, andconfig.status  files. Once in this state, the syst
reconfigured prior to building.

Each set of target “build” directories (and the object/library files an
is an independent entity. After configuring and building DAKOTA f
you can configure and build for, say, an Intel/TFLOP target, with
previous Sun/Solaris files. Only theMakefile  symbolic links are o
target binaries and object/library files get removed with a “clean ” rul
target/build directories get removed with a “distclean ” rule. Thus
operation for one platform will not interfere with other platform fil
“clean ” or “distclean ” executions may be needed for each ta
to completely clean a distribution.
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After a successful build, the actual “dakota ” executable is located 
within $DAKOTA/src  (e.g.,$DAKOTA/src/sparc-sun-solaris2.5.1
dakota ). In addition, test simulator executables reside in the bu
$DAKOTA/test  (e.g.,$DAKOTA/test/sparc-sun-solaris2.5.1/
text_book ). Symbolic links to these executables are provided 
directory for testing convenience.
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Caveats

Intel cross-compilation

The InteliCC compilers provided by the Portland Group for the C
require that the object and template instantiation files reside in th
source files for linking of thedakota  executable. Therefore, the v
build directory in the dakota source (nominally$DAKOTA/src/
pentium-intel-cougar ) must be overridden in the source M
src/Makefile.intel ) to ensure that the objects are placed i
rather than a build subdirectory. To perform this override, two mod
to Makefile.intel . Change the line:

DAKOTA_SRC_BUILD = $(DAKOTA_SRC)/$(target_canonical)

to
DAKOTA_SRC_BUILD = $(DAKOTA_SRC)

and then remove or comment out the following line from the dist
prevent removal of the source directory on a “make distclean ”:

$(RM) -r $(DAKOTA_SRC_BUILD)

System modifications

If you need to do unusual things to build this system, please dete
used to accomplish them. Notify us via e-mail by sending instruc
shown below so that a future release can incorporate your recom

Michael S. Eldred, Sandia National Laboratories, mseldre@sandia.gov
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Sun Solaris platform

After checking out the repository or extracting the tape archive, a
present which is ready for configuration and compilation. An exa
performed on the Sandia JAL LAN is supplied in which the Dako
installed at the top level of a user directory.

First, one sets environment variables, changes directories to the
configuring and building, and installs soft links to the Rogue Wav
installation directories, e.g.:

setenv DAKOTA $HOME/Dakota
cd $DAKOTA
ln -s /usr/sharelan/dakota/rogue_wave/rogue rogue
ln -s /usr/local/mpi mpi

From this directory, executing the command
./configure --with-mpi

gives the following output with omissions as marked:
Configuring for a sparc-sun-solaris2.5.1 host.
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota using "config/mh-solaris" and "config/
mt-solaris" and "./config/ms-dakota.std"
Configuring idr...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/idr using "config/mh-solaris" and
"config/mt-solaris" and "./config/ms-dakota.std"
Configuring VendorOptimizers...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers using "config/
mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
Configuring sgopt...
sparc-sun-solaris2.5.1
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Host/Target/Site Configuration:
  HOST          solaris
  TARGET        solaris
  SITE          dakota.std
  COMPILER
config/mp-solaris-dakota.std does not exist! Using a default configuration!
Package Configuration:
  MPI           no
  TCC           no
  GM            no
  COBYLA        no
  OPTIMIZATION  <default>
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/sgopt using "config/
mf-solaris-solaris-dakota.std" and "./config/ms-dakota.std"
<<omission of SGOPT subdirectories>>
Configuring DOT...
Linked "config" to "./../../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/DOT using "config/
mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
Configuring NPSOL...
Linked "config" to "./../../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/NPSOL using "config/
mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
Configuring opt++...
Linked "config" to "./../../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/opt++ using "config/
mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
<<omission of OPT++ subdirectories>>
Configuring src...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/src using "config/mh-solaris" and
"config/mt-solaris" and "./config/ms-dakota.std"
Configuring test...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/test using "config/mh-solaris" and
"config/mt-solaris" and "./config/ms-dakota.std"

as it generates Makefiles in the DAKOTA subdirectories.

Now that Makefiles have been created, executing the command
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make

from the same$DAKOTAdirectory will build the system. While this
to fully replicate here, some excerpts are provided below with om

============================================================
= Building Input Deck Reader executable: 'idrtest' - BEGIN =
============================================================
if [ ! -d $DAKOTA/idr/sparc-sun-solaris2.5.1 ]; then \
   mkdir -m 775 $DAKOTA/idr/sparc-sun-solaris2.5.1; \
fi
/usr/ccs/bin/make -f Makefile.sun $DAKOTA/idr/sparc-sun-solaris2.5.1/idrtest

<<omission>>

============================================================
= Building Input Deck Reader executable: 'idrtest' - END =
============================================================

===============================================
= Install DAKOTA software - BEGIN  =
===============================================
=========================================================
= Install Input Deck Reader library - BEGIN =
=========================================================
if [ ! -d $DAKOTA/idr/sparc-sun-solaris2.5.1 ]; then \
   mkdir -m 775 $DAKOTA/idr/sparc-sun-solaris2.5.1; \
fi
/usr/ccs/bin/make -f Makefile.sun library

Archiving Object File(s) --  idr.o idr-parser.o

ar ru $DAKOTA/idr/sparc-sun-solaris2.5.1/libidr.a $DAKOTA/idr/sparc-sun-solaris2.5.1/
idr.o $DAKOTA/idr/sparc-sun-solaris2.5.1/idr-parser.o
ar: creating $DAKOTA/idr/sparc-sun-solaris2.5.1/libidr.a
ls -lF $DAKOTA/idr/sparc-sun-solaris2.5.1/libidr.a
-rw-rw-r--   1 <user>   <user>     46684 Jan  8 09:52 $DAKOTA/idr/
sparc-sun-solaris2.5.1/libidr.a

=========================================================
= Install Input Deck Reader library - END =
=========================================================
=========================================================
= Install DAKOTA VendorOptimizers - BEGIN  =
=========================================================
(for DIRS in sgopt DOT NPSOL opt++; do  \
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  cd ${DIRS}; /usr/ccs/bin/make -f Makefile.sun install; cd ..; \
done)
==============================================
= Install SGOPT Software - BEGIN =
==============================================
if [ ! -d $DAKOTA/VendorOptimizers/sgopt/sparc-sun-solaris2.5.1 ]; then \
   mkdir -m 775 $DAKOTA/VendorOptimizers/sgopt/sparc-sun-solaris2.5.1; \
fi
(for DIRS in packages src examples; do  \
  cd ${DIRS}; /usr/ccs/bin/make -f Makefile.sun install; cd ..; \
done)

<<omission>>

============================================
= Install SGOPT Software - END =
============================================
=======================================
= Install DOT Package - BEGIN =
=======================================
if [ ! -d $DAKOTA/VendorOptimizers/DOT/sparc-sun-solaris2.5.1 ]; then \
   mkdir -m 775 $DAKOTA/VendorOptimizers/DOT/sparc-sun-solaris2.5.1; \
fi
(/usr/ccs/bin/make -f Makefile.sun library);

<<omission>>

=======================================
= Install DOT Package - END   =
=======================================
=======================================
= Install NPSOL Package - BEGIN =
=======================================
if [ ! -d $DAKOTA/VendorOptimizers/NPSOL/sparc-sun-solaris2.5.1 ]; then \
   mkdir -m 775 $DAKOTA/VendorOptimizers/NPSOL/sparc-sun-solaris2.5.1; \
fi
(/usr/ccs/bin/make -f Makefile.sun library);

<<omission>>

=======================================
= Install NPSOL Package - END   =
=======================================
=========================================
= Install OPT++ Package - BEGIN =
=========================================
if [ ! -d $DAKOTA/VendorOptimizers/opt++/sparc-sun-solaris2.5.1 ]; then \
   mkdir -m 775 $DAKOTA/VendorOptimizers/opt++/sparc-sun-solaris2.5.1; \
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fi

<<omission>>

========================================
= Install OPT++ Package - END  =
========================================
=========================================================
= Install DAKOTA VendorOptimizers - END  =
=========================================================
============================================
= Install DAKOTA Source - BEGIN =
============================================
if [ ! -d $DAKOTA/src/sparc-sun-solaris2.5.1 ]; then \
   mkdir -m 775 $DAKOTA/src/sparc-sun-solaris2.5.1; \
fi
(/usr/ccs/bin/make -f Makefile.sun $DAKOTA/src/sparc-sun-solaris2.5.1/libdakota.a);

<<omission>>

(/usr/ccs/bin/make -f Makefile.sun $DAKOTA/src/sparc-sun-solaris2.5.1/dakota);

Linking Object File(s) -- Creating DAKOTA executable: dakota

CC -fast   -D__EXTERN_C__ -DDAKOTA_SGOPT -DDAKOTA_DOT -DDAKOTA_NPSOL -D
-DNEWMAT -DSERIAL -DUNIX -DSOLARIS -DMULTITASK -I$DAKOTA/src/. -I$DAKOTA/idr
-I$DAKOTA/VendorOptimizers/sgopt/include/.  -I$DAKOTA/VendorOptimizers/sgopt/packages
stdlib/include/. -I$DAKOTA/VendorOptimizers/DOT/include/. -I$DAKOTA/VendorOptimizers/
NPSOL/include/. -I$DAKOTA/VendorOptimizers/opt++/include/.   -L/opt/SUNWspro/SC4.2/lib
-o$DAKOTA/src/sparc-sun-solaris2.5.1/dakota$DAKOTA/src/sparc-sun-solaris2.5.1/main.o
$DAKOTA/src/sparc-sun-solaris2.5.1/decomp.o                    $DAKOTA/src/
sparc-sun-solaris2.5.1/init_parallel_lib.o         $DAKOTA/src/sparc-sun-solaris2.5.1/
keywordtable.o $DAKOTA/src/sparc-sun-solaris2.5.1/CommandLineHandler.o
$DAKOTA/src/sparc-sun-solaris2.5.1/DakotaModel.o               $DAKOTA/src/
sparc-sun-solaris2.5.1/DakotaVariables.o           $DAKOTA/src/sparc-sun-solaris2.5.1/
DakotaResponse.o $DAKOTA/src/sparc-sun-solaris2.5.1/DakotaInterface.o
$DAKOTA/src/sparc-sun-solaris2.5.1/ApplicationInterface.o      $DAKOTA/src/
sparc-sun-solaris2.5.1/SysCallApplicInterface.o    $DAKOTA/src/sparc-sun-solaris2.5.1/
DirectFnApplicInterface.o $DAKOTA/src/sparc-sun-solaris2.5.1/DirectFnTextBook.o
$DAKOTA/src/sparc-sun-solaris2.5.1/ExecutableProgram.o         $DAKOTA/src/
sparc-sun-solaris2.5.1/AnalysisCode.o              $DAKOTA/src/sparc-sun-solaris2.5.1/
CommandShell.o $DAKOTA/src/sparc-sun-solaris2.5.1/ParamResponsePair.
$DAKOTA/src/sparc-sun-solaris2.5.1/ProblemDescDB.o             $DAKOTA/src/
sparc-sun-solaris2.5.1/DataMethod.o                $DAKOTA/src/sparc-sun-solaris2.5.1/
DataVariables.o $DAKOTA/src/sparc-sun-solaris2.5.1/DataResponses.o
$DAKOTA/src/sparc-sun-solaris2.5.1/DataInterface.o             $DAKOTA/src/
sparc-sun-solaris2.5.1/DakotaStrategy.o            $DAKOTA/src/sparc-sun-solaris2.5.1/
SingleMethodStrategy.o $DAKOTA/src/sparc-sun-solaris2.5.1/MultilevelOptStrategy.o
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$DAKOTA/src/sparc-sun-solaris2.5.1/SeqApproxOptStrategy.o      $DAKOTA/src/
sparc-sun-solaris2.5.1/NonDOptStrategy.o           $DAKOTA/src/sparc-sun-solaris2.5.1/
DakotaIterator.o $DAKOTA/src/sparc-sun-solaris2.5.1/ParamStudy.o
$DAKOTA/src/sparc-sun-solaris2.5.1/DakotaNonD.o                $DAKOTA/src/
sparc-sun-solaris2.5.1/NonDProbability.o           $DAKOTA/src/sparc-sun-solaris2.5.1/
NonDMeanValue.o $DAKOTA/src/sparc-sun-solaris2.5.1/Lhs.o
$DAKOTA/src/sparc-sun-solaris2.5.1/LhsInput.o                  $DAKOTA/src/
sparc-sun-solaris2.5.1/Vm_util.o                   $DAKOTA/src/sparc-sun-solaris2.5.1/
DakotaOptimizer.o $DAKOTA/src/sparc-sun-solaris2.5.1/DOTOptimizer.o
$DAKOTA/src/sparc-sun-solaris2.5.1/SNLLOptimizer.o                              $DAKOTA/
src/sparc-sun-solaris2.5.1/SGOPTOptimizer.o  $DAKOTA/src/sparc-sun-solaris2.5.1/
SGOPTRealApplication.o                              $DAKOTA/src/sparc-sun-solaris2.5.1/
NPSOLOptimizer.o  $DAKOTA/src/sparc-sun-solaris2.5.1/npoptn_wrapper.o $DAKOTA/idr/
sparc-sun-solaris2.5.1/libidr.a $DAKOTA/VendorOptimizers/sgopt/sparc-sun-solaris2.5.1/
libsgopt.a $DAKOTA/VendorOptimizers/sgopt/packages/stdlib/sparc-sun-solaris2.5.1/
libstdlib.a  $DAKOTA/VendorOptimizers/DOT/sparc-sun-solaris2.5.1/libdot.a $DAKOTA/
VendorOptimizers/NPSOL/sparc-sun-solaris2.5.1/libnpsol.a $DAKOTA/VendorOptimizers/opt+
sparc-sun-solaris2.5.1/liboptpp.a -lrwtool -lM77 -lF77 -lsunmath -ll -ly -lm

============================================
= Install DAKOTA Source - END   =
============================================
===================================================
= Install DAKOTA Test code - BEGIN =
===================================================
if [ ! -d $DAKOTA/test/sparc-sun-solaris2.5.1 ]; then \
   mkdir -m 775 $DAKOTA/test/sparc-sun-solaris2.5.1; \
fi

<<omission>>

===================================================
= Install DAKOTA Test code - END =
===================================================
============================================
= Install DAKOTA software - END =
============================================

You can now change directories to the test area
cd test

and execute dakota on the test files therein, e.g.:
dakota -i dakota_textbook.in
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Textbook Problem Formulation

The optimization problem formulation is stated as
minimize

subject to

This example problem may also be used to exercise least squar
modifying the problem formulation to:

minimize

This modification is performed by simply changing the response
three functions fromnum_objective_functions = 1  and

f x 1 1–( )4 x 2 1–( )4 … x n 1–( )4+ + +=

g1 x 1
2 x 2

2
------–= 0≤

g2 x 2
2

0.5–= 0≤

0.5 x≤ 1 5.8≤

2.9– x≤ 2 2.9≤

f( )2 g1( )2 g2( )2+ +
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num_nonlinear_constraints = 2  to num_least_squares_t
Note that the 2 problem formulations are not equivalent and will 
More specifically, the optimization solution seeks to find the min
which satisfies the constraint inequalities, whereas the least squ
minimize the sum of the squares of the three residual functions.

Another way to exercise the least squares methods which would

optimization formulation would be to select the residual function

However, this formulation requires significant modification totext_bo
not be presented here. Equation (13), on the other hand, does no
to text_book.C . Refer toRosenbrock Example for an example o
same objective function using both optimization and least square
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Methods

DOT and NPSOL methods may be used to solve this optimizatio
without the constraints. OPT++ methods may be used to solve t
optimization problem or the least squares problem.

Thedakota_textbook.in  file provided in theDakota/test  d
dot_mmfd  optimizer to perform constrained minimization using t
simulator. This simulator returns analytic gradients as requested

A multilevel hybrid can also be demonstrated on thetext_book  pro
dakota_multilevel.in  file provided in theDakota/test  dir
sgopt_pga_real  solution which feeds its best point into asgopt_c
optimization which feeds its best point intooptpp_newton . While 
overkill for such a simple problem, it is useful for demonstrating th
multiple methods in the multilevel strategy.

In addition,dakota_textbook_3pc.in  demonstrates the use 
to perform the parameter to response mapping anddakota_textbook_
demonstrates the use of latin hypercube Monte Carlo sampling fo
failure as measured by specified response thresholds.
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Results

Optimization

The solution for the unconstrained optimization problem for 2 de
x1 = 1.0
x2 = 1.0

with
f* = 0.0

The solution for the optimization problem constrained byg1 is:
x1 = 0.763
x2 = 1.16

with
f* = 0.00388
g1* = 0.0 (active)

The solution for the optimization problem constrained byg1 andg2 is
x1 = 0.594
x2 = 0.707

with
f* = 0.0345
g1* = 0.0 (active)
g2* = 0.0 (active)
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Note that as constraints are added, the design freedom is restric
objective function is observed. Of course, no penalty would be o
constraints were not active at the solution.

Thedot_sqp  optimizer navigates to the constrained optimum in
gradient calls (17 evaluations total). The output from this minimiz

MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = dot_sqp
gradientType = analytic
hessianType = none
Running MPI executable in serial mode.
Running Single Method Strategy...

                  DDDDD        OOOOO       TTTTTTT
                  D    D      O     O         T
                  D    D  ==  O  *  O  ==     T
                  D    D      O     O         T
                  DDDDD        OOOOO          T

                     DESIGN OPTIMIZATION TOOLS

                       (C) COPYRIGHT, 1995

                               VR&D

                  ALL RIGHTS RESERVED, WORLDWIDE

                           VERSION 4.20
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  CONTROL PARAMETERS

  OPTIMIZATION METHOD,                METHOD =       3
  NUMBER OF DECISION VARIABLES,          NDV =       2
  NUMBER OF CONSTRAINTS,                NCON =       2
  PRINT CONTROL PARAMETER,            IPRINT =       3
  GRADIENT PARAMETER,                  IGRAD =       1
    GRADIENTS ARE SUPPLIED BY THE USER
  THE OBJECTIVE FUNCTION WILL BE MINIMIZED

------------------------------
Begin Function Evaluation    1
------------------------------
Parameters for function evaluation 1:
                      9.0000000000e-01 x1
                      1.1000000000e+00 x2

(text_book text_book.in.1 text_book.out.1)

Active response data for function evaluation 1:
Active set vector = { 1 1 1 }
                      2.0000000000e-04 obj_fn
                      2.6000000000e-01 nln_con1
                      7.1000000000e-01 nln_con2

  -- SCALAR PROGRAM PARAMETERS

  REAL PARAMETERS
    1) CT     = -3.00000E-02            8) DX2    =  2.20000E-01
    2) CTMIN  =  3.00000E-03            9) FDCH   =  1.00000E-03
    3) DABOBJ =  2.00000E-08           10) FDCHM  =  1.00000E-04
    4) DELOBJ =  1.00000E-04           11) RMVLMZ =  4.00000E-01
    5) DOBJ1  =  1.00000E-01           12) DABSTR =  2.00000E-08
    6) DOBJ2  =  2.00000E-01           13) DELSTR =  1.00000E-03
    7) DX1    =  1.00000E-02

  INTEGER PARAMETERS
    1) IGRAD  =      1    6) NCOLA  =      2   11) IPRNT1 =      0
    2) ISCAL  =   1000    7) IGMAX  =      0   12) IPRNT2 =      0
    3) ITMAX  =     50    8) JTMAX  =     50   13) JWRITE =      0
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    4) ITRMOP =      2    9) ITRMST =      2
    5) IWRITE =      6   10) JPRINT =      0

     STORAGE REQUIREMENTS
  ARRAY  DIMENSION  REQUIRED
    WK       136       136
   IWK        81        81

  -- INITIAL VARIABLES AND BOUNDS

  LOWER BOUNDS ON THE DECISION VARIABLES (XL-VECTOR)
       1)   5.00000E-01  -2.90000E+00

  DECISION VARIABLES (X-VECTOR)
       1)   9.00000E-01   1.10000E+00

  UPPER BOUNDS ON THE DECISION VARIABLES (XU-VECTOR)
       1)   5.80000E+00   2.90000E+00

  -- INITIAL FUNCTION VALUES

  OBJ =  2.00000E-04

  CONSTRAINT VALUES (G-VECTOR)
       1)   2.60000E-01   7.10000E-01

  -- BEGIN CONSTRAINED OPTIMIZATION: SQP METHOD

  -- BEGIN SQP ITERATION    1

------------------------------
Begin Function Evaluation    2
------------------------------
Parameters for function evaluation 2:
                      9.0000000000e-01 x1
                      1.1000000000e+00 x2

(text_book text_book.in.2 text_book.out.2)

Active response data for function evaluation 2:
Active set vector = { 2 2 2 }
 [ -4.0000000000e-03  4.0000000000e-03  ] obj_fn gradient
 [  1.8000000000e+00 -5.0000000000e-01  ] nln_con1 gradient



DAK 337

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 [  0.0000000000e+00  2.2000000000e+00  ] nln_con2 gradient

------------------------------
Begin Function Evaluation    3
------------------------------
Parameters for function evaluation 3:
                      6.6386363636e-01 x1
                      7.7590909091e-01 x2

(text_book text_book.in.3 text_book.out.3)

Active response data for function evaluation 3:
Active set vector = { 1 1 1 }
                      1.5287930702e-02 obj_fn
                      5.2760382226e-02 nln_con1
                      1.0203491736e-01 nln_con2

------------------------------
Begin Function Evaluation    4
------------------------------
Duplication detected in response requests for this parameter set:
                      6.6386363636e-01 x1
                      7.7590909091e-01 x2

Active response data retrieved from database:
Active set vector = { 1 1 1 }
                      1.5287930702e-02 obj_fn
                      5.2760382226e-02 nln_con1
                      1.0203491736e-01 nln_con2

  OBJ = 1.52879E-02

  DECISION VARIABLES (X-VECTOR)
       1)   6.63864E-01   7.75909E-01

  CONSTRAINT VALUES (G-VECTOR)
       1)   5.27604E-02   1.02035E-01

  GMAX =  1.0203E-01

  -- BEGIN SQP ITERATION    2
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------------------------------
Begin Function Evaluation    5
------------------------------
Parameters for function evaluation 5:
                      6.6386363636e-01 x1
                      7.7590909091e-01 x2

(text_book text_book.in.5 text_book.out.5)

Active response data for function evaluation 5:
Active set vector = { 2 2 2 }
 [ -1.5191703790e-01 -4.5012455672e-02  ] obj_fn gradient
 [  1.3277272727e+00 -5.0000000000e-01  ] nln_con1 gradient
 [  0.0000000000e+00  1.5518181818e+00  ] nln_con2 gradient

------------------------------
Begin Function Evaluation    6
------------------------------
Parameters for function evaluation 6:
                      5.9637770195e-01 x1
                      7.0822402407e-01 x2

(text_book text_book.in.6 text_book.out.6)

Active response data for function evaluation 6:
Active set vector = { 1 1 1 }
                      3.3787645889e-02 obj_fn
                      1.5543513482e-03 nln_con1
                      1.5812682699e-03 nln_con2

------------------------------
Begin Function Evaluation    7
------------------------------
Parameters for function evaluation 7:
                      6.0987488883e-01 x1
                      7.2176103744e-01 x2

(text_book text_book.in.7 text_book.out.7)

Active response data for function evaluation 7:
Active set vector = { 1 1 1 }
                      2.9157489712e-02 obj_fn
                      1.1066861305e-02 nln_con1
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                      2.0938995166e-02 nln_con2

------------------------------
Begin Function Evaluation    8
------------------------------
Parameters for function evaluation 8:
                      6.1399879055e-01 x1
                      7.2589710766e-01 x2

(text_book text_book.in.8 text_book.out.8)

Active response data for function evaluation 8:
Active set vector = { 1 1 1 }
                      2.7844963118e-02 obj_fn
                      1.4045960967e-02 nln_con1
                      2.6926610909e-02 nln_con2

  OBJ = 2.78450E-02

  DECISION VARIABLES (X-VECTOR)
       1)   6.13999E-01   7.25897E-01

  CONSTRAINT VALUES (G-VECTOR)
       1)   1.40460E-02   2.69266E-02

  GMAX =  2.6927E-02

  -- BEGIN SQP ITERATION    3

------------------------------
Begin Function Evaluation    9
------------------------------
Parameters for function evaluation 9:
                      6.1399879055e-01 x1
                      7.2589710766e-01 x2

(text_book text_book.in.9 text_book.out.9)

Active response data for function evaluation 9:
Active set vector = { 2 2 2 }
 [ -2.3005198645e-01 -8.2376027758e-02  ] obj_fn gradient
 [  1.2279975811e+00 -5.0000000000e-01  ] nln_con1 gradient
 [  0.0000000000e+00  1.4517942153e+00  ] nln_con2 gradient
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------------------------------
Begin Function Evaluation   10
------------------------------
Parameters for function evaluation 10:
                      5.9089395588e-01 x1
                      7.0528357263e-01 x2

(text_book text_book.in.10 text_book.out.10)

Active response data for function evaluation 10:
Active set vector = { 1 1 1 }
                      3.5556238180e-02 obj_fn
                     -3.4861192195e-03 nln_con1
                     -2.5750821783e-03 nln_con2

------------------------------
Begin Function Evaluation   11
------------------------------
Parameters for function evaluation 11:
                      5.9551492281e-01 x1
                      7.0940627964e-01 x2

(text_book text_book.in.11 text_book.out.11)

Active response data for function evaluation 11:
Active set vector = { 1 1 1 }
                      3.3898544900e-02 obj_fn
                     -6.5116530600e-05 nln_con1
                      3.2572695927e-03 nln_con2

------------------------------
Begin Function Evaluation   12
------------------------------
Parameters for function evaluation 12:
                      5.9559270455e-01 x1
                      7.0947567449e-01 x2

(text_book text_book.in.12 text_book.out.12)

Active response data for function evaluation 12:
Active set vector = { 1 1 1 }
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                      3.3871152259e-02 obj_fn
                     -7.1675318164e-06 nln_con1
                      3.3557326930e-03 nln_con2

  OBJ = 3.38712E-02

  DECISION VARIABLES (X-VECTOR)
       1)   5.95593E-01   7.09476E-01

  CONSTRAINT VALUES (G-VECTOR)
       1)  -7.16753E-06   3.35573E-03

  GMAX =  3.3557E-03

  -- BEGIN SQP ITERATION    4

------------------------------
Begin Function Evaluation   13
------------------------------
Parameters for function evaluation 13:
                      5.9559270455e-01 x1
                      7.0947567449e-01 x2

(text_book text_book.in.13 text_book.out.13)

Active response data for function evaluation 13:
Active set vector = { 2 2 2 }
 [ -2.6455558611e-01 -9.8086106593e-02  ] obj_fn gradient
 [  1.1911854091e+00 -5.0000000000e-01  ] nln_con1 gradient
 [  0.0000000000e+00  1.4189513490e+00  ] nln_con2 gradient

------------------------------
Begin Function Evaluation   14
------------------------------
Parameters for function evaluation 14:
                      5.9371257075e-01 x1
                      7.0499649858e-01 x2

(text_book text_book.in.14 text_book.out.14)

Active response data for function evaluation 14:
Active set vector = { 1 1 1 }
                      3.4821641822e-02 obj_fn
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                     -3.6326234263e-06 nln_con1
                     -2.9799369899e-03 nln_con2

------------------------------
Begin Function Evaluation   15
------------------------------
Parameters for function evaluation 15:
                      5.9408859751e-01 x1
                      7.0589233377e-01 x2

(text_book text_book.in.15 text_book.out.15)

Active response data for function evaluation 15:
Active set vector = { 1 1 1 }
                      3.4629329912e-02 obj_fn
                     -4.9051936012e-06 nln_con1
                     -1.7160131247e-03 nln_con2

------------------------------
Begin Function Evaluation   16
------------------------------
Parameters for function evaluation 16:
                      5.9442052455e-01 x1
                      7.0668310706e-01 x2

(text_book text_book.in.16 text_book.out.16)

Active response data for function evaluation 16:
Active set vector = { 1 1 1 }
                      3.4460496673e-02 obj_fn
                     -5.7935237028e-06 nln_con1
                     -5.9898619602e-04 nln_con2

  OBJ = 3.44605E-02

  DECISION VARIABLES (X-VECTOR)
       1)   5.94421E-01   7.06683E-01

  CONSTRAINT VALUES (G-VECTOR)
       1)  -5.79352E-06  -5.98986E-04

  GMAX = -5.7935E-06
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  -- BEGIN SQP ITERATION    5

------------------------------
Begin Function Evaluation   17
------------------------------
Parameters for function evaluation 17:
                      5.9442052455e-01 x1
                      7.0668310706e-01 x2

(text_book text_book.in.17 text_book.out.17)

Active response data for function evaluation 17:
Active set vector = { 2 2 2 }
 [ -2.6686271425e-01 -1.0094184051e-01  ] obj_fn gradient
 [  1.1888410491e+00 -5.0000000000e-01  ] nln_con1 gradient
 [  0.0000000000e+00  1.4133662141e+00  ] nln_con2 gradient

  Q.P. SUB-PROBLEM GAVE NULL SEARCH DIRECTION.  CONVERGENCE ASSUMED.

  -- OPTIMIZATION IS COMPLETE

  NUMBER OF CONSTRAINED MINIMIZATIONS =    5

  CONSTRAINT TOLERANCE, CT =-3.00000E-02

  THERE ARE       2 ACTIVE CONSTRAINTS AND       0 VIOLATED CONSTRAINTS
  CONSTRAINT NUMBERS
           1         2

  THERE ARE       0 ACTIVE SIDE CONSTRAINTS

  TERMINATION CRITERIA

  MAXIMUM S-VECTOR COMPONENT = 0.00000E+00 IS LESS THAN 1.00000E-04

  -- OPTIMIZATION RESULTS

  OBJECTIVE, F(X) =    3.44605E-02
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  DECISION VARIABLES, X

     ID         XL             X            XU
      1     5.00000E-01   5.94421E-01   5.80000E+00
      2    -2.90000E+00   7.06683E-01   2.90000E+00

  CONSTRAINTS, G(X)

       1)  -5.79352E-06  -5.98986E-04

  FUNCTION CALLS =      12

  GRADIENT CALLS =       5

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 17 total (16 new, 1 duplicate)
<<<<< Best design parameters  =
                      5.9442052455e-01 x1
                      7.0668310706e-01 x2
<<<<< Best objective function =
                      3.4460496673e-02
<<<<< Best constraint values  =
                     -5.7935237028e-06
                     -5.9898619602e-04
Run time from MPI_Init to MPI_Finalize is 2.3499540000e+00 seconds

Least Squares

The solution for the least squares problem is:
x1 = 0.602
x2 = 0.710

with the residual functions equal to
f* = 0.0322
g1* = 0.00673
g2* = 0.00455

and a minimal sum of the squares of 0.00111.
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This study requires selection ofnum_least_squares_terms = 3
specification and selection of eitheroptpp_g_newton  or optpp_bc
the method specification. Theoptpp_bcg_newton  method naviga
squares solution in 5 function and gradient calls. This output is s

MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = optpp_bcg_newton
gradientType = analytic
hessianType = none
Running MPI executable in serial mode.
Running Single Method Strategy...

------------------------------
Begin Function Evaluation    1
------------------------------
Parameters for function evaluation 1:
                      9.0000000000e-01 x1
                      1.1000000000e+00 x2

(text_book text_book.in.1 text_book.out.1)

Active response data for function evaluation 1:
Active set vector = { 3 3 3 }
                      2.0000000000e-04 least_sq_term1
                      2.6000000000e-01 least_sq_term2
                      7.1000000000e-01 least_sq_term3
 [ -4.0000000000e-03  4.0000000000e-03  ] least_sq_term1 gradient
 [  1.8000000000e+00 -5.0000000000e-01  ] least_sq_term2 gradient
 [  0.0000000000e+00  2.2000000000e+00  ] least_sq_term3 gradient

    nlf2_evaluator_gn results: objective fn. =
    5.7170004000e-01
    nlf2_evaluator_gn results: objective fn. gradient =
 [  9.3599840000e-01  2.8640016000e+00 ]
    nlf2_evaluator_gn results: objective fn. Hessian =
[[  6.4800320000e+00 -1.8000320000e+00
   -1.8000320000e+00  1.0180032000e+01 ]]

------------------------------
Begin Function Evaluation    2
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------------------------------
Parameters for function evaluation 2:
                      6.6590894007e-01 x1
                      7.7727283167e-01 x2

(text_book text_book.in.2 text_book.out.2)

Active response data for function evaluation 2:
Active set vector = { 3 3 3 }
                      1.4919211444e-02 least_sq_term1
                      5.4798300630e-02 least_sq_term2
                      1.0415305485e-01 least_sq_term3
 [ -1.4916074862e-01 -4.4195655359e-02  ] least_sq_term1 gradient
 [  1.3318178801e+00 -5.0000000000e-01  ] least_sq_term2 gradient
 [  0.0000000000e+00  1.5545456633e+00  ] least_sq_term3 gradient

    nlf2_evaluator_gn results: objective fn. =
    1.4073295457e-02
    nlf2_evaluator_gn results: objective fn. gradient =
 [  1.4151199166e-01  2.6770433019e-01 ]
    nlf2_evaluator_gn results: objective fn. Hessian =
[[  3.5919755894e+00 -1.3186333660e+00
   -1.3186333660e+00  5.3371309505e+00 ]]

------------------------------
Begin Function Evaluation    3
------------------------------
Parameters for function evaluation 3:
                      6.0233226286e-01 x1
                      7.1140623577e-01 x2

(text_book text_book.in.3 text_book.out.3)

Active response data for function evaluation 3:
Active set vector = { 3 3 3 }
                      3.1944760199e-02 least_sq_term1
                      7.1010369970e-03 least_sq_term2
                      6.0988322924e-03 least_sq_term3
 [ -2.5154811392e-01 -9.6143697434e-02  ] least_sq_term1 gradient
 [  1.2046645257e+00 -5.0000000000e-01  ] least_sq_term2 gradient
 [  0.0000000000e+00  1.4228124715e+00  ] least_sq_term3 gradient

    nlf2_evaluator_gn results: objective fn. =
    1.1080881859e-03
    nlf2_evaluator_gn results: objective fn. gradient =
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 [  1.0374463766e-03  4.1113775791e-03 ]
    nlf2_evaluator_gn results: objective fn. Hessian =
[[  3.0289861462e+00 -1.1562949942e+00
   -1.1562949942e+00  4.5672778792e+00 ]]

------------------------------
Begin Function Evaluation    4
------------------------------
Parameters for function evaluation 4:
                      6.0157271127e-01 x1
                      7.1031375941e-01 x2

(text_book text_book.in.4 text_book.out.4)

Active response data for function evaluation 4:
Active set vector = { 3 3 3 }
                      3.2242004707e-02 least_sq_term1
                      6.7328472397e-03 least_sq_term2
                      4.5456368072e-03 least_sq_term3
 [ -2.5299225122e-01 -9.7239696468e-02  ] least_sq_term1 gradient
 [  1.2031454225e+00 -5.0000000000e-01  ] least_sq_term2 gradient
 [  0.0000000000e+00  1.4206275188e+00  ] least_sq_term3 gradient

    nlf2_evaluator_gn results: objective fn. =
    1.1055409135e-03
    nlf2_evaluator_gn results: objective fn. gradient =
 [ -1.1276603567e-04 -8.7939264600e-05 ]
    nlf2_evaluator_gn results: objective fn. Hessian =
[[  3.0231279737e+00 -1.1539436431e+00
   -1.1539436431e+00  4.5552762115e+00 ]]

------------------------------
Begin Function Evaluation    5
------------------------------
Parameters for function evaluation 5:
                      6.0162216282e-01 x1
                      7.1034559141e-01 x2

(text_book text_book.in.5 text_book.out.5)

Active response data for function evaluation 5:
Active set vector = { 3 3 3 }
                      3.2226401354e-02 least_sq_term1
                      6.7764310912e-03 least_sq_term2
                      4.5908592356e-03 least_sq_term3
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 [ -2.5289806109e-01 -9.7207644612e-02  ] least_sq_term1 gradient
 [  1.2032443256e+00 -5.0000000000e-01  ] least_sq_term2 gradient
 [  0.0000000000e+00  1.4206911828e+00  ] least_sq_term3 gradient

    nlf2_evaluator_gn results: objective fn. =
    1.1055369511e-03
    nlf2_evaluator_gn results: objective fn. gradient =
 [  7.4156799421e-06  2.6502438991e-06 ]
    nlf2_evaluator_gn results: objective fn. Hessian =
[[  3.0235086728e+00 -1.1540770759e+00
   -1.1540770759e+00  4.5556255261e+00 ]]

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 5 total (5 new, 0 duplicate)
<<<<< Best design parameters  =
                      6.0162216282e-01 x1
                      7.1034559141e-01 x2
<<<<< Best objective function =
                      1.1055369511e-03
Run time from MPI_Init to MPI_Finalize is 9.5173000000e-01 seconds
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Rosenbrock Problem Formulatio

The Rosenbrock function (see[Gill, P.E., Murray, W., and Wright, M
well known benchmark problem for optimization algorithms. Its fo
as

minimize

This example problem may also be used to exercise least squar
recasting the problem formulation into:

minimize

where

and

are residual terms. In this case (unlike the least squares modific
Problem Formulation), the 2 problem formulations are equivalent
solutions.

f 100 x 2 x 1
2

–( )
2

1 x– 1( )2
+=

f f 1( )2 f 2( )2+=

f 1 10 x 2 x 1
2

–( )=

f 2 1 x 1–=
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Methods

In theDakota/test  directory, therosenbrock  executable (com
rosenbrock.C ) returns an objective function as computed from
optimization methods. Therosenbrock_ls  executable (compiled
rosenbrock_ls.C ) returns two least squares terms as compu
(17) for use with least squares iterators. Both executables return
function set (gradient of the objective function inrosenbrock , grad
squares residuals inrosenbrock_ls ) with respect to the design 
dakota_rosenbrock.in  input file is used to solve both proble
settings in the interface, responses, and method specifications. 
solution, select’rosenbrock’  as theanalysis_driver  in the 
specification, selectnum_objective_functions  to be 1 in the 
specification, and select an unconstrained or bound-constrained
specification (e.g.,dot_bfgs , optpp_bcq_newton ), e.g.:

interface,
application system,
  analysis_driver =    ’rosenbrock’

variables,
continuous_design = 2
  cdv_initial_point    0.8      0.7 \
  cdv_lower_bounds    -2.0     -2.0
  cdv_upper_bounds     2.0      2.0
  cdv_descriptor       ’x1’     ’x2’

responses,
num_objective_functions = 1
analytic_gradients
no_hessians

method,
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optpp_bcq_newton,
 max_iterations = 500
 convergence_tolerance = 1e-10

To run the least squares solution, select’rosenbrock_ls’  as the
analysis_driver  in the interface specification, select
num_least_squares_terms  to be 2 in the responses specific
Gauss-Newton iterator in the method specification (i.e.,optpp_g_new
optpp_bcg_newton ), e.g.:

interface,
application system,
  analysis_driver =    ’rosenbrock_ls’

variables,
continuous_design = 2
  cdv_initial_point    0.8      0.7 \
  cdv_lower_bounds    -2.0     -2.0
  cdv_upper_bounds     2.0      2.0
  cdv_descriptor       ’x1’     ’x2’

responses,
num_least_squares_terms = 2
analytic_gradients
no_hessians

method,
optpp_bcg_newton,
 max_iterations = 500
 convergence_tolerance = 1e-10
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Results

The optimal solution, solved either as a least squares problem or
is:

x1 = 1.0
x2 = 1.0

with
f* = 0.0

In comparing the two approaches, one would expect the Gauss-
more efficient since it exploits the special-structure of a least squ
From a good initial guess, this expected behavior is observed. S
cdv_initial_point = 0.8, 0.7 , theoptpp_bcg_newton
in only 3 function and gradient evaluations while theoptpp_bcq_new
requires 14 function and gradient evaluations to achieve similar 
poorer initial guess (e.g.,cdv_initial_point = -1.2, 1.0  a
Dakota/test/dakota_rosenbrock.in ), the trend is less ob
methods spend several evaluations finding the vicinity of the mini
gradient evaluations = 24 foroptpp_bcq_newton and 29 foroptpp
However, once the vicinity is located, convergence is much more
Newton approach (11 orders of magnitude reduction in the object
and gradient evaluation) than with the quasi-Newton approach (1
reduction in the objective function in 10 function and gradient ev
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Shown below is the DAKOTA output for theoptpp_bcg_newton  m
from cdv_initial_point = 0.8, 0.7 :

MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = optpp_bcg_newton
gradientType = analytic
hessianType = none
Running MPI executable in serial mode.
Running Single Method Strategy...

------------------------------
Begin Function Evaluation    1
------------------------------
Parameters for function evaluation 1:
                      8.0000000000e-01 x1
                      7.0000000000e-01 x2

(rosenbrock_ls /var/tmp/aaaa000Sg /var/tmp/baaa000Sg)
Removing /var/tmp/aaaa000Sg and /var/tmp/baaa000Sg

Active response data for function evaluation 1:
Active set vector = { 3 3 }
                      6.0000000000e-01 least_sq_term1
                      2.0000000000e-01 least_sq_term2
 [ -1.6000000000e+01  1.0000000000e+01  ] least_sq_term1 gradient
 [ -1.0000000000e+00  0.0000000000e+00  ] least_sq_term2 gradient

    nlf2_evaluator_gn results: objective fn. =
    4.0000000000e-01
    nlf2_evaluator_gn results: objective fn. gradient =
 [ -1.9600000000e+01  1.2000000000e+01 ]
    nlf2_evaluator_gn results: objective fn. Hessian =
[[  5.1400000000e+02 -3.2000000000e+02
   -3.2000000000e+02  2.0000000000e+02 ]]

------------------------------
Begin Function Evaluation    2
------------------------------
Parameters for function evaluation 2:
                      9.9999528206e-01 x1
                      9.5999243139e-01 x2
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(rosenbrock_ls /var/tmp/caaa000Sg /var/tmp/daaa000Sg)
Removing /var/tmp/caaa000Sg and /var/tmp/daaa000Sg

Active response data for function evaluation 2:
Active set vector = { 3 3 }
                     -3.9998132752e-01 least_sq_term1
                      4.7179400000e-06 least_sq_term2
 [ -1.9999905641e+01  1.0000000000e+01  ] least_sq_term1 gradient
 [ -1.0000000000e+00  0.0000000000e+00  ] least_sq_term2 gradient

    nlf2_evaluator_gn results: objective fn. =
    1.5998506239e-01
    nlf2_evaluator_gn results: objective fn. gradient =
 [  1.5999168181e+01 -7.9996265504e+00 ]
    nlf2_evaluator_gn results: objective fn. Hessian =
[[  8.0199245130e+02 -3.9999811282e+02
   -3.9999811282e+02  2.0000000000e+02 ]]

------------------------------
Begin Function Evaluation    3
------------------------------
Parameters for function evaluation 3:
                      9.9999904378e-01 x1
                      9.9999808275e-01 x2

(rosenbrock_ls /var/tmp/eaaa000Sg /var/tmp/faaa000Sg)
Removing /var/tmp/eaaa000Sg and /var/tmp/faaa000Sg

Active response data for function evaluation 3:
Active set vector = { 3 3 }
                     -4.8109144446e-08 least_sq_term1
                      9.5621999996e-07 least_sq_term2
 [ -1.9999980876e+01  1.0000000000e+01  ] least_sq_term1 gradient
 [ -1.0000000000e+00  0.0000000000e+00  ] least_sq_term2 gradient

    nlf2_evaluator_gn results: objective fn. =
    9.1667117810e-13
    nlf2_evaluator_gn results: objective fn. gradient =
 [  1.1923937841e-08 -9.6218288892e-07 ]
    nlf2_evaluator_gn results: objective fn. Hessian =
[[  8.0199847008e+02 -3.9999961752e+02
   -3.9999961752e+02  2.0000000000e+02 ]]

<<<<< Single method iteration completed.
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<<<<< Function evaluation summary: 3 total (3 new, 0 duplicate)
<<<<< Best design parameters  =
                      9.9999904378e-01 x1
                      9.9999808275e-01 x2
<<<<< Best objective function =
                      9.1667117810e-13
Run time from MPI_Init to MPI_Finalize is 7.8900400000e-01 seconds
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Cylinder Head Problem Formula

The cylinder head example problem arose as a simple demonst
Technologies Enabling Agile Manufacturing (TEAM) project. Its f

minimize

subject to

This formulation seeks to simultaneously maximize normalized e
engine warranty over variables of valve intake diameter (dintake ) in i

head flatness (flatness ) in thousandths of an inch subject to co
maximum stress cannot exceed half of yield, that warranty must
and that manufacturing cycle time must be less than 60 seconds

f 1 horsepower
250

--------------------------------------- warranty
100000

-------------------------------+ 
 –=

g1 σmax 0.5σyield–= 0≤

g2 100000 warranty–= 0≤

g3 time cycle 60–= 0≤

1.5 d≤ intake 2.164≤

0.0 flatness≤ 4.0≤
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and constraints are related analytically to the design variables a
simple expressions:

where the constants in Eqns. (19) and (28) assume the following

3000 , offset intake = 3.25 , offset exhaust = 1.34 , andde

warranty 100000 15000 4 flatness–(+=

time cycle 45 4.5 4 flatness–( )1.5
+=

horsepower 250 200
dintake

1.8333
---------------------- 1– 

 +=

σmax 750 1

t wall( )2.5
--------------------------+=

t wall offset intake offset exhaust–
dintake +(

2
----------------------------–=
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Methods

In theDakota/test  directory, thedakota_cyl_head.in  input
execute the cylinder head example. This file is shown below:

interface,
application system,
  asynchronous
  analysis_driver=  ‘cyl_head’

variables,
continuous_design = 2
  cdv_initial_point    1.8    1.0\
  cdv_upper_bounds     2.164  4.0\
  cdv_lower_bounds     1.5    0.0\
  cdv_descriptor ‘intake_dia’ ‘flatness’

responses,
num_objective_functions = 1
num_nonlinear_constraints = 3
numerical_gradients
  method_source dakota
  interval_type central
  fd_step_size = 1.e-4
no_hessians

method,
        npsol_sqp

  convergence_tolerance = 1.e-8
#   linear_constraints = 1. 1. -3.7\

  output verbose

The interface keyword specifies use of thecyl_head  executable (c
Dakota/test/cyl_head.C ) as the simulator. The variables an
specify the data sets to be used in the iteration by providing the 
and upper and lower bounds for two continuous design variables
presence of one objective function, three constraints, and analyt
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problem. The method keyword specifies the use of thenpsol_sqp  m
constrained optimization problem. No strategy keyword is specifi
single_method  strategy is used.
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Optimization Results

The solution for the constrained optimization problem is:
intake_dia = 2.122
flatness = 1.769

with
f* = -2.461
g1* = 0.0 (active)
g2* = -0.3347 (inactive)
g2* = 0.0 (active)

which corresponds to the following optimal response quantities:
warranty = 133472
cycle_time = 60
horse_power = 281.579
max_stress = 1500

The DAKOTA output follows:
MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = npsol_sqp
gradientType = analytic
hessianType = none

NPSOL option settings:
----------------------
Verify Level                = -1
Major Print Level           = 20
Function Precision          = 1e-10
Linesearch Tolerance        = 0.9
Major Iteration Limit      = 100
Optimality Tolerance        = 1e-08
NOTE: NPSOL’s convergence tolerance is not a relative tolerance.
      See pp. 21-22 of NPSOL manual for description.
Derivative Level            = 3
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Running MPI executable in serial mode.
Running Single Method Strategy...

                     NPSOL  ---  Version 4.06-2     Nov  1992
                     ========================================

------------------------------
Begin Function Evaluation    1
------------------------------
Parameters for function evaluation 1:
                      1.8000000000e+00 intake_dia
                      1.0000000000e+00 flatness

(cyl_head /var/tmp/aaaa0010M /var/tmp/baaa0010M)
In cyl_head evaluator:
warranty = 145000
cycle_time = 68.3827
wall_thickness = 0.232
horse_power = 246.399
max_stress = 788.573
Removing /var/tmp/aaaa0010M and /var/tmp/baaa0010M

Active response data for function evaluation 1:
Active set vector = { 3 3 3 3 }
                     -2.4355973813e+00 obj_fn
                     -4.7428486677e-01 nln_con1
                     -4.5000000000e-01 nln_con2
                      1.3971143170e-01 nln_con3
 [ -4.3644298963e-01  1.5000000000e-01  ] obj_fn gradient
 [  1.3855136438e-01  0.0000000000e+00  ] nln_con1 gradient
 [  0.0000000000e+00  1.5000000000e-01  ] nln_con2 gradient
 [  0.0000000000e+00 -1.9485571585e-01  ] nln_con3 gradient

  Maj  Mnr    Step  Fun  Merit function  Violtn Norm gZ   nZ Penalty Conv
    0    2 0.0E+00    1 -1.98878999E+00 3.9E-01 0.0E+00    0 4.6E+01 F TF

------------------------------
Begin Function Evaluation    2
------------------------------
Parameters for function evaluation 2:
                      2.1640000000e+00 intake_dia
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                      1.7169994018e+00 flatness

(cyl_head /var/tmp/caaa0010M /var/tmp/daaa0010M)
In cyl_head evaluator:
warranty = 134245
cycle_time = 60.5229
wall_thickness = 0.05
horse_power = 286.116
max_stress = 2538.85
Removing /var/tmp/caaa0010M and /var/tmp/daaa0010M

Active response data for function evaluation 2:
Active set vector = { 3 3 3 3 }
                     -2.4869127193e+00 obj_fn
                      6.9256958800e-01 nln_con1
                     -3.4245008973e-01 nln_con2
                      8.7142207939e-03 nln_con3
 [ -4.3644298963e-01  1.5000000000e-01  ] obj_fn gradient
 [  2.9814239700e+01  0.0000000000e+00  ] nln_con1 gradient
 [  0.0000000000e+00  1.5000000000e-01  ] nln_con2 gradient
 [  0.0000000000e+00 -1.6998301774e-01  ] nln_con3 gradient

    1    1 1.0E+00    2 -2.46707673E+00 6.9E-01 0.0E+00    0 6.8E+00 F TF

------------------------------
Begin Function Evaluation    3
------------------------------
Parameters for function evaluation 3:
                      2.1407705098e+00 intake_dia
                      1.7682646453e+00 flatness

(cyl_head /var/tmp/eaaa0010M /var/tmp/faaa0010M)
In cyl_head evaluator:
warranty = 133476
cycle_time = 60.0029
wall_thickness = 0.0616147
horse_power = 283.581
max_stress = 1811.18
Removing /var/tmp/eaaa0010M and /var/tmp/faaa0010M

Active response data for function evaluation 3:
Active set vector = { 3 3 3 3 }
                     -2.4690845846e+00 obj_fn
                      2.0745219855e-01 nln_con1
                     -3.3476030320e-01 nln_con2
                      4.9104542814e-05 nln_con3
 [ -4.3644298963e-01  1.5000000000e-01  ] obj_fn gradient
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 [  1.4352331520e+01  0.0000000000e+00  ] nln_con1 gradient
 [  0.0000000000e+00  1.5000000000e-01  ] nln_con2 gradient
 [  0.0000000000e+00 -1.6806368014e-01  ] nln_con3 gradient

------------------------------
Begin Function Evaluation    4
------------------------------
Parameters for function evaluation 4:
                      2.1607040498e+00 intake_dia
                      1.7242732458e+00 flatness

(cyl_head /var/tmp/gaaa0010M /var/tmp/haaa0010M)
In cyl_head evaluator:
warranty = 134136
cycle_time = 60.4487
wall_thickness = 0.051648
horse_power = 285.756
max_stress = 2399.55
Removing /var/tmp/gaaa0010M and /var/tmp/haaa0010M

Active response data for function evaluation 4:
Active set vector = { 3 3 3 3 }
                     -2.4843831483e+00 obj_fn
                      5.9970320968e-01 nln_con1
                     -3.4135901313e-01 nln_con2
                      7.4787762078e-03 nln_con3
 [ -4.3644298963e-01  1.5000000000e-01  ] obj_fn gradient
 [  2.6615351511e+01  0.0000000000e+00  ] nln_con1 gradient
 [  0.0000000000e+00  1.5000000000e-01  ] nln_con2 gradient
 [  0.0000000000e+00 -1.6971201116e-01  ] nln_con3 gradient

    2    0 1.4E-01    4 -2.46179789E+00 6.0E-01 0.0E+00    0 6.8E+00 F TF

------------------------------
Begin Function Evaluation    5
------------------------------
Parameters for function evaluation 5:
                      2.1381718203e+00 intake_dia
                      1.7683406996e+00 flatness

(cyl_head /var/tmp/iaaa0010M /var/tmp/jaaa0010M)
In cyl_head evaluator:
warranty = 133475
cycle_time = 60.0022
wall_thickness = 0.0629141
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horse_power = 283.298
max_stress = 1757.23
Removing /var/tmp/iaaa0010M and /var/tmp/jaaa0010M

Active response data for function evaluation 5:
Active set vector = { 3 3 3 3 }
                     -2.4679389967e+00 obj_fn
                      1.7148906598e-01 nln_con1
                     -3.3474889506e-01 nln_con2
                      3.6322686164e-05 nln_con3
 [ -4.3644298963e-01  1.5000000000e-01  ] obj_fn gradient
 [  1.3341388781e+01  0.0000000000e+00  ] nln_con1 gradient
 [  0.0000000000e+00  1.5000000000e-01  ] nln_con2 gradient
 [  0.0000000000e+00 -1.6806081643e-01  ] nln_con3 gradient

------------------------------
Begin Function Evaluation    6
------------------------------
Parameters for function evaluation 6:
                      2.1523079940e+00 intake_dia
                      1.7406938490e+00 flatness

(cyl_head /var/tmp/kaaa0010M /var/tmp/laaa0010M)
In cyl_head evaluator:
warranty = 133890
cycle_time = 60.2818
wall_thickness = 0.055846
horse_power = 284.84
max_stress = 2106.81
Removing /var/tmp/kaaa0010M and /var/tmp/laaa0010M

Active response data for function evaluation 6:
Active set vector = { 3 3 3 3 }
                     -2.4782556582e+00 obj_fn
                      4.0454151196e-01 nln_con1
                     -3.3889592265e-01 nln_con2
                      4.6970356970e-03 nln_con3
 [ -4.3644298963e-01  1.5000000000e-01  ] obj_fn gradient
 [  2.0246335086e+01  0.0000000000e+00  ] nln_con1 gradient
 [  0.0000000000e+00  1.5000000000e-01  ] nln_con2 gradient
 [  0.0000000000e+00 -1.6909862055e-01  ] nln_con3 gradient

    3    0 3.7E-01    6 -2.45857429E+00 4.0E-01 0.0E+00    0 6.8E+00 F TF

------------------------------
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Begin Function Evaluation    7
------------------------------
Parameters for function evaluation 7:
                      2.1323270192e+00 intake_dia
                      1.7684707504e+00 flatness

(cyl_head /var/tmp/maaa0010M /var/tmp/naaa0010M)
In cyl_head evaluator:
warranty = 133473
cycle_time = 60.0009
wall_thickness = 0.0658365
horse_power = 282.66
max_stress = 1649.15
Removing /var/tmp/maaa0010M and /var/tmp/naaa0010M

Active response data for function evaluation 7:
Active set vector = { 3 3 3 3 }
                     -2.4653685666e+00 obj_fn
                      9.9434951763e-02 nln_con1
                     -3.3472938744e-01 nln_con2
                      1.4466560964e-05 nln_con3
 [ -4.3644298963e-01  1.5000000000e-01  ] obj_fn gradient
 [  1.1381130512e+01  0.0000000000e+00  ] nln_con1 gradient
 [  0.0000000000e+00  1.5000000000e-01  ] nln_con2 gradient
 [  0.0000000000e+00 -1.6805591946e-01  ] nln_con3 gradient

    4    0 1.0E+00    7 -2.46038884E+00 9.9E-02 0.0E+00    0 6.8E+00 F TF

------------------------------
Begin Function Evaluation    8
------------------------------
Parameters for function evaluation 8:
                      2.1235901936e+00 intake_dia
                      1.7685568322e+00 flatness

(cyl_head /var/tmp/oaaa0010M /var/tmp/paaa0010M)
In cyl_head evaluator:
warranty = 133472
cycle_time = 60
wall_thickness = 0.0702049
horse_power = 281.707
max_stress = 1515.74
Removing /var/tmp/oaaa0010M and /var/tmp/paaa0010M

Active response data for function evaluation 8:
Active set vector = { 3 3 3 3 }
                     -2.4615425280e+00 obj_fn
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                      1.0493396662e-02 nln_con1
                     -3.3471647517e-01 nln_con2
                      1.4443046759e-10 nln_con3
 [ -4.3644298963e-01  1.5000000000e-01  ] obj_fn gradient
 [  9.0893472783e+00  0.0000000000e+00  ] nln_con1 gradient
 [  0.0000000000e+00  1.5000000000e-01  ] nln_con2 gradient
 [  0.0000000000e+00 -1.6805267803e-01  ] nln_con3 gradient

  Maj  Mnr    Step  Fun  Merit function  Violtn Norm gZ   nZ Penalty Conv
    5    0 1.0E+00    8 -2.46101307E+00 1.0E-02 0.0E+00    0 6.8E+00 F TF

------------------------------
Begin Function Evaluation    9
------------------------------
Parameters for function evaluation 9:
                      2.1224357217e+00 intake_dia
                      1.7685568330e+00 flatness

(cyl_head /var/tmp/qaaa0010M /var/tmp/raaa0010M)
In cyl_head evaluator:
warranty = 133472
cycle_time = 60
wall_thickness = 0.0707821
horse_power = 281.581
max_stress = 1500.22
Removing /var/tmp/qaaa0010M and /var/tmp/raaa0010M

Active response data for function evaluation 9:
Active set vector = { 3 3 3 3 }
                     -2.4610386667e+00 obj_fn
                      1.4914647635e-04 nln_con1
                     -3.3471647505e-01 nln_con2
                      9.9882324633e-12 nln_con3
 [ -4.3644298963e-01  1.5000000000e-01  ] obj_fn gradient
 [  8.8325450545e+00  0.0000000000e+00  ] nln_con1 gradient
 [  0.0000000000e+00  1.5000000000e-01  ] nln_con2 gradient
 [  0.0000000000e+00 -1.6805267800e-01  ] nln_con3 gradient

    6    0 1.0E+00    9 -2.46103129E+00 1.5E-04 0.0E+00    0 6.8E+00 F TF

------------------------------
Begin Function Evaluation   10
------------------------------
Parameters for function evaluation 10:
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                      2.1224188357e+00 intake_dia
                      1.7685568331e+00 flatness

(cyl_head /var/tmp/saaa0010M /var/tmp/taaa0010M)
In cyl_head evaluator:
warranty = 133472
cycle_time = 60
wall_thickness = 0.0707906
horse_power = 281.579
max_stress = 1500
Removing /var/tmp/saaa0010M and /var/tmp/taaa0010M

Active response data for function evaluation 10:
Active set vector = { 3 3 3 3 }
                     -2.4610312969e+00 obj_fn
                      3.1248197141e-08 nln_con1
                     -3.3471647503e-01 nln_con2
                     -6.8171024381e-12 nln_con3
 [ -4.3644298963e-01  1.5000000000e-01  ] obj_fn gradient
 [  8.8288585865e+00  0.0000000000e+00  ] nln_con1 gradient
 [  0.0000000000e+00  1.5000000000e-01  ] nln_con2 gradient
 [  0.0000000000e+00 -1.6805267799e-01  ] nln_con3 gradient

    7    0 1.0E+00   10 -2.46103130E+00 3.1E-08 0.0E+00    0 6.8E+00 T TF

------------------------------
Begin Function Evaluation   11
------------------------------
Parameters for function evaluation 11:
                      2.1224188321e+00 intake_dia
                      1.7685568331e+00 flatness

(cyl_head /var/tmp/uaaa0010M /var/tmp/vaaa0010M)
In cyl_head evaluator:
warranty = 133472
cycle_time = 60
wall_thickness = 0.0707906
horse_power = 281.579
max_stress = 1500
Removing /var/tmp/uaaa0010M and /var/tmp/vaaa0010M

Active response data for function evaluation 11:
Active set vector = { 3 3 3 3 }
                     -2.4610312954e+00 obj_fn
                     -5.3569115810e-10 nln_con1
                     -3.3471647503e-01 nln_con2
                     -6.8171024381e-12 nln_con3



DAK ults 370

S

D

P

OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Optimization Res

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 [ -4.3644298963e-01  1.5000000000e-01  ] obj_fn gradient
 [  8.8288578008e+00  0.0000000000e+00  ] nln_con1 gradient
 [  0.0000000000e+00  1.5000000000e-01  ] nln_con2 gradient
 [  0.0000000000e+00 -1.6805267799e-01  ] nln_con3 gradient

    8    0 1.0E+00   11 -2.46103130E+00 5.4E-10 0.0E+00    0 6.8E+00 T TT

 Exit NPSOL - Optimal solution found.

 Final nonlinear objective value =   -2.461031

NPSOL exits with INFORM code = 0 (see p. 8 of NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
      for complete NPSOL iteration history.

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 11 total (11 new, 0 duplicate)
<<<<< Best design parameters  =
                      2.1224188321e+00 intake_dia
                      1.7685568331e+00 flatness
<<<<< Best objective function =
                     -2.4610312954e+00
<<<<< Best constraint values  =
                     -5.3569115810e-10
                     -3.3471647503e-01
                     -6.8171024381e-12
Run time from MPI_Init to MPI_Finalize is 1.6473130000e+00 seconds
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Transportation Cask Example

In this example, use is made of C-shell scripting to coordinate pr
of analyses, and post-processing.

Work in progress

Alternate with workdir tagging: radar load spreader plate
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GOMA/EXODUS Application Ex

This tutorial is designed to give an experienced GOMA/EXODUS
into tying the DAKOTA iterator toolkit to the GOMA simulation co
understanding GOMA and the EXODUS file format, the user is a
understanding of a programming language such as C or FORTR
the examples will be presented in C, the programs can just as e
FORTRAN.

Standard text_book example

Problem formulation:

The problem to be solved in this portion of the tutorial is the text

subject to simple bounds on the variables: x1 and x2 range between -

Dakota_sample.in problem description file:

Sections are delimited by newline characters. Therefore, to cont
multiple lines, the back-slash character is needed to  escape the

f x 1 1–( )4
x 2 1–( )4

g1

+

x 1
2 x 2

2
------– 0

g2

≤

x 2
2

0.5– 0≤

=

=

=
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independent and white-space insensitive. Keywords may be abb
abbreviation is unique. Comments are preceded by #.The defini
grammar isDakota/src/dakota.input.spec .

# DAKOTA INPUT FILE - dakota_textbook.in
# Interface section specification
# NOTES: Interfaces are 1 of 3 main types: application interfaces are used
#      for interfacing with simulation codes, approximation interfaces use
#     inexpensive design space approximations in place of expensive
#     simulations, and test interfaces use linked-in test functions for
#     algorithm testing purposes (to eliminate system call overhead).
#     Application interfaces can be further categorized into system and
#     direct types. The system type uses system calls to invoke the
#     simulation, while the direct type uses the same constructs as the test
#     interface for linked-in simulation codes.  Both application interface
#     types use analysis_driver, input_filter, and output_filter
#     specifications. The system type additionally uses parameters_file,
#     results_file, analysis_usage, file_tag, and file_save specifications.
#     The analysis_driver provides the name of the analysis executable,
#     driver script, or linked module; the input_filter and output_filter
#      provide pre- and post-processing for the analysis in the procedure of
#     mapping parameters into responses (default = NO_FILTER); the
#     parameters_file and results_file are data files which Dakota creates
#     and reads, respectively, in the system call case (default = Unix temp
#     files); analysis_usage defines nontrivial command syntax (default =
#     standard syntax), file_tag controls the unique tagging of data files
#     with function evaluation number (default = no tagging), and file_save
#     controls whether or not file cleanup operations are performed (default
#     = data files are removed when no longer in use). Most settings are
#     optional with meaningful defaults as shown above. Refer to the
#     Interface Commands section in the User’s Instructions manual for
#     additional information.

interface,\
application system,\
  input_filter    =       ‘NO_FILTER’\
  output_filter   =       ‘NO_FILTER’\
  analysis_driver =       ‘text_book’\
  parameters_file =       ‘text_book.in’\
  results_file    =       ‘text_book.out’\
  analysis_usage  =       ‘DEFAULT’\
  file_tag\
  file_save

# Variables specification
# NOTES:A variables set can contain design, uncertain, and state variables.
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#      Design variables are those variables which an optimizer adjusts in
#      order to locate an optimal design.  Each of the n design parameters
#      can have an initial point, a lower bound, an upper bound, and a
#       descriptive tag.  Uncertain variables are those variables which are
#      characterized by probability distributions.  Each uncertain variable
#        specification can contain a distribution type, a mean, a standard
#        deviation, a lower bound, an upper bound, a histogram filename and a
#        descriptive tag.  State variables are “other” variables which are to
#        be mapped through the interface.  Each state variable specification
#      can have an initial state and a descriptor.  State variables provide a
#    convenience mechanism for parameterizing additional model inputs, such
#      as mesh density, solver convergence tolerance and time step controls,
#        and will be used to enact model adaptivity in future strategy
#        developments.

variables,\
continuous_design = 2\
  cdv_initial_point    0.9    1.1\
  cdv_upper_bounds     5.8    2.9\
  cdv_lower_bounds     0.5   -2.9\
  cdv_descriptor       ‘x1’   ‘x2’

# Responses specification
# NOTES: This specification implements a generalized Dakota data set by
#       specifying a set of functions and the types of gradients and hessians
#      for these functions.  Optimization data sets require specification of
#      num_objective_functions, num_linear_constraints, and
#      num_nonlinear_constraints. Multiobjective opt. is not yet supported,
#      so num_objective_functions must be = 1. Uncertainty quantification
#      data sets are specified by num_response_functions.  Nonlinear least
#     squares data sets are specified with num_least_squares_terms.
#      Gradient type specification may be no_gradients, analytic_gradients,
#     numerical_gradients or mixed_gradients:
#        > no_gradients is invalid with gradient-based opt. methods
#        > no_gradients or analytic_gradients are complete specifications
#        > if numerical_gradients, then:
#             >> method_source = vendor OR dakota
#             >> interval_type = forward OR cental
#             >> fd_step_size = <float>
#          are additional optional parameters in the specification.
#        > mixed_gradients uses id_numerical & id_analytic lists to specify
#         the gradient types for different function numbers.  This capability
#        is not yet completely implemented within the Iterators.
#        Hessian type specification may currently be no_hessians or
#        analytic_hessians.  The only optimizers to currently support
#        analytic_hessians are the OPT++ full Newton methods.

responses,\
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num_objective_functions = 1\
num_linear_constraints = 0\
num_nonlinear_constraints = 2\
analytic_gradients\
no_hessians

# Strategy specification
# NOTES: Contains specifications for hybrid, SAO, and OUU strategies.  The
#     single_method strategy is a “fall through” strategy, in that in only
#     invokes a single iterator.  If no strategy specification appears, then
#     single_method is the default.

strategy,\
single_method

# Method specification
# NOTES: method can currently be dot_frcg, dot_mmfd, dot_bfgs, dot_slp,
#        dot_sqp, npsol_sqp, optpp_cg, optpp_q_newton, optpp_g_newton,
#        optpp_newton, optpp_fd_newton, optpp_ba_newton, optpp_baq_newton,
#        optpp_bc_newton, optpp_bcq_newton, optpp_bc_ellipsoid, optpp_pds,
#        optpp_test_new, sgopt_pga_real, sgopt_pga_int, sgopt_coord_ps,
#        sgopt_coord_sps, sgopt_solis_wets, sgopt_strat_mc, nond_probability,
#     nond_mean_value, or parameter_study. Most method control parameters
#     are optional with meaningful defaults, although sgopt_coord_ps,
#     sgopt_coord_sps, parameter_study, nond_probability, and
#     nond_mean_value have some required control parameters. Default values
#     for optional parameters are defined in the DataMethod class
#     constructor and are documented in the Method Commands section of the
#        User’s Instructions manual.

method,\
        dot_sqp,\

  max_iterations = 50,\
  convergence_tolerance = 1e-4\
  output verbose\
  optimization_type minimize

Simulator file text_book.C:

This simple application program reads the parameters and write
therefore, the NO_FILTER option is be used. The output must b
DakotaResponse IO operators.

#include <iostream.h>
#include <iomanip.h>
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#include <fstream.h>
#include <math.h>
#include <rw/cstring.h>

#ifdef SYMANTEC
#include <console.h>
#endif

double eval(const double* x, int len);
int main(int argc, char** argv)
{
#ifdef SYMANTEC
  argc = ccommand(&argv);

  for(int num=0; num<argc; num++) {
    cout << argv[num] << “ “;
  }
  cout << ‘\n’;
#endif

  ifstream fin(argv[1]);
  ofstream fout(argv[2]);

  // Get the first line and use info for array allocation
  int num_vars, num_fns;
  RWCString vars_text, fns_text;
  fin >> num_vars >> vars_text >> num_fns >> fns_text;

  // Get the parameter vector and ignore the labels
  //vector<double> x(num_vars);
  double* x = new double [num_vars];
  int i;
  for(i=0; i<num_vars; i++) {
    fin >> x[i];
    fin.ignore(256, ‘\n’);
  }

  // Get the ASV vector and ignore the labels
  int* ASV = new int [num_fns];
  for(i=0; i<num_fns; i++) {
    fin >> ASV[i];
    fin.ignore(256, ‘\n’);
  }

  // Compute the results and output them directly to argv[2] (the NO_FILTER
  // option is used).  Response tags are now optional; output them for ease
  // of results readability.
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  fout.precision(10);
  fout.setf(ios::scientific);
  fout.setf(ios::right);
  // **** f:
  if (ASV[0]==1 || ASV[0]==3 || ASV[0]==5 || ASV[0]==7)
    fout << “                     “ << eval(x, num_vars) << “ f\n”;

  // **** c1:
  if (num_fns>1) {
    if (ASV[1]==1 || ASV[1]==3 || ASV[1]==5 || ASV[1]==7)
      fout << “                     “ << (x[0]*x[0] - 0.5*x[1]) << “ c1\n”;
  }

  // **** c2:
  if (num_fns>2) {
    if (ASV[2]==1 || ASV[2]==3 || ASV[2]==5 || ASV[2]==7)
      fout << “                     “ << (x[1]*x[1] - 0.5     ) << “ c2\n”;
  }

  // **** df/dx:
  if (ASV[0]==2 || ASV[0]==3 || ASV[0]==6 || ASV[0]==7) {
    fout << “[ “;
    for (i=0; i<num_vars; i++)
      fout << 4.*pow(x[i]-1,3) << “ “;
    fout << “]\n”;
  }

  // **** dc1/dx:
  if (num_fns>1) {
    if (ASV[1]==2 || ASV[1]==3 || ASV[1]==6 || ASV[1]==7) {
      fout << “[ “ << 2.*x[0] << “ “ << -0.5;
      for (i=3; i<=num_vars; i++)
        fout << “ “ << 0.0;
      fout << “ ]\n”;
    }
  }

  // **** dc2/dx:
  if (num_fns>2) {
    if (ASV[2]==2 || ASV[2]==3 || ASV[2]==6 || ASV[2]==7) {
      fout << “[ “ << 0.0 << “ “ << 2.*x[1];
      for (i=3; i<=num_vars; i++)
        fout << “ “ << 0.0;
      fout << “ ]\n”;
    }
  }

  // **** d^2f/dx^2: (full Newton unconstrained opt.)
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  if (ASV[0]>=4) {
    fout << “[[ “;
    for (i=0; i<num_vars; i++)
      for (int j=0; j<num_vars; j++)
        if (i==j)
          fout << 12.*pow(x[i]-1,2) << “ “;
        else
          fout << 0. << “ “;
    fout << “]]\n”;
  }

  // **** d^2c1/dx^2: (ParamStudy testing of multiple Hessian matrices)
  if (num_fns>1) {
    if (ASV[1]>=4) {
      fout << “[[ “;
      for (i=0; i<num_vars; i++)
        for (int j=0; j<num_vars; j++)
          if (i==0 && j==0)
            fout << 2. << “ “;
          else
            fout << 0. << “ “;
      fout << “]]\n”;
    }
  }

  // **** d^2c2/dx^2: (ParamStudy testing of multiple Hessian matrices)
  if (num_fns>2) {
    if (ASV[2]>=4) {
      fout << “[[ “;
      for (i=0; i<num_vars; i++)
        for (int j=0; j<num_vars; j++)
          if (i==1 && j == 1)
            fout << 2. << “ “;
          else
            fout << 0. << “ “;
      fout << “]]\n”;
    }
  }

  fout << flush;
  delete [] x;
  delete [] ASV;

  return 0;
}

//double eval(const vector<double>& x)
double eval(const double* x, int len)
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{
  double value=0;

  for(int i=len; i--; ) {
    value += pow(x[i]-1, 4);
  }

  return value;
}

Invokation of text_book:

The command syntax which DAKOTA will use is as shown below
file names will be passed on the command line to the specified ex
will be employed to keep the file names unique. The names of th
files are passed on the command line for the convenience of the
since these arguments can be used to remove hard coding of fil
generality:

text_book text_book.in.1 text_book.out.1

The  text_book.in.1 parameters file is:
                      2 variables 3 functions
                      9.0000000000e-01 x1
                      1.1000000000e+00 x2
                                     1 ASV_1
                                     1 ASV_2
                                     1 ASV_3

and the text_book.out.1 results files is:
                     2.0000000000e-04 f
                     2.6000000000e-01 c1
                     7.1000000000e-01 c2

Results:
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The dot_sqp method converges to the optimal solution in 17 tota
when foward finite differences are used

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 17 total (16 new, 1 duplicate)
<<<<< Best design parameters  =
                      5.9442052455e-01 x1
                      7.0668310706e-01 x2
<<<<< Best objective function =
                      3.4460496673e-02
<<<<< Best constraint values  =
                     -5.7935237028e-06
                     -5.9898619602e-04

Example text_book recast in GOMA format: Filter Introduction

There are several ways of interfacing DAKOTA with a simulation c
here applies DAKOTA’s 1-piece Interface capability. For this met
one system call per function evaluation and all control over the e
user.  DAKOTA also has a 3-piece Interface capability which per
calls for the input filter, simulation code, and the output filter, in tha
the cost function and constraints.  In the optimization problems d
evaluation of the cost function is performed by a combination of 
supervisory UNIX shell program using the 1-piece Interface cap

Figure 1 outlines how variables and response data are passed as
codes interact.  A DAKOTA input file (e.g.,dakota_sample.in ) s
parameters for the DAKOTA optimization run such as names of th
file params.in andresults.out , respectively, the number of d
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bounds and initial values, information concerning the number of 
gradients are calculated, and the optimization method desired.

Just prior to requesting a function evaluation, DAKOTA writes thep
file contains the current values of the design variables and anactive se
request for values of the function and constraints, their gradients
matrix.  DAKOTA then spawns a system call andparams.in  is read
programcost.sh .  The shell program is fairly simple in that all i
in_filt.c , GOMA, andout_filt.c  in the appropriate order.

The input filter program,in_filt.c , places design variables ide
params.in  into a file that is formatted for use by APREPRO.  T
into the mesh generator file or into the GOMA input deck.  GOM
EXODUS file is generated.  The output filter program,out_filt.c ,
EXODUS file, extracts the necessary results, computes the cost
the constraints, and then writes the fileresults.out  in DAKOTA r

in_filt.c out_filt.cMesh/GOMA

DAKOTAparams.in results.out

cost.sh

Figure 1. DAKOTA interface scheme
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The programsin_filt.c andout_filt.c are written in a gene
filter can be run without any modification in most optimizations.  
is provided that only requires the subroutines to evaluate the cos
constraints.  The code for writing the fileresults.out  file is also 

DAKOTA Filter Tutorial
Thetext_book example will be revisited in this portion of the tuto
in the form used by the GOMA applications. The problem formu

subject to simple bounds on the variables:x1 andx2 which range be

The following steps are used to generate a 3-piece interface.

1. Change directories into the “tutorial” directory (this location 
course you are taking and how you installed your software).

2. You will notice the directory contains five files:in_filt.c , ou
dak_goma.h , cost.sh , andtut.in .  The filetut.in  is th
specification as discussed earlier.  Issue the following comm

more tut.in

The first part of the file defines how the DAKOTAinterface is
the end of a line signifies a continuation. It must be present

f x 1 1–( )4
x 2 1–( )4

g1

+

x 1
2 x 2

2
------– 0

g2

≤

x 2
2

0.5– 0≤

=

=

=
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carriage return prior to the end of a keyword specification (ein
method , variables ,...) This syntax is necessary because
keyword input completion with a newline, so newlines enter
be escaped with a ‘\’. Note that the communication files are
params.in  andresults.out .  The cost function is evalua
cost.sh , which is called whenever DAKOTA issues the co

cost.sh params.in results.out

to the operating system. The shell functioncost.sh  must there
this in mind (as we will see next).

interface,
 application system,
  input_filter =          ‘NO_FILTER’ \
  output_filter =         ‘NO_FILTER’ \
  analysis_driver=        ‘cost.sh’ \
  parameters_file=        ‘params.in’ \
  results_file=           ‘results.out’ \
  analysis_usage =        ‘DEFAULT’

Next, the design variables are set up.  Note that there are tw

andx2, and the starting point is (2, 2). Each variable may ra

+10.
variables,
 continuous_design = 2
  cdv_initial_point        2.0      2.0\
  cdv_upper_bounds     10.0     10.0\
  cdv_lower_bounds    -10.0    -10.0\
  cdv_descriptor       ‘x1’     ‘x2’

The response specification describes the number of constra
gradients.  In this problem and in the problems utilizing GOM
calculated using a forward difference scheme:

responses,
 num_objective_functions = 1
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 num_linear_constraints = 0
 num_nonlinear_constraints = 2
 numerical_gradients

method_source  vendor           \
interval_type forward           \
fd_step_size = 0.001            \

 no_hessians

The last portion selects the optimization technique to be use
method,                                        \
 dot_sqp,                                  \

max_iterations = 50,                  \
convergence_tolerance = 1e-8          \
output verbose                        \
optimization_type minimize

3. Now execute the command:
more cost.sh

This file is the supervisory file that controls the cost function
simple example has no GOMA evaluation.

#! /bin/csh -f
#
#  This shell file evaluates the cost function
#    for a dakota run
#
in_filt $argv[1] out.app

## GOMA run goes here!!

out_filt $argv[1] $argv[2]

The input filter,in_filt.c , places the design variables ide
params.in  into a file,out.app .  The fileout_filt.c will 
out.app  and evaluate the cost function then write the fileresult
first line of the filecost.sh  is necessary for the shell to exe
variables$argv[1]  and$argv[2]  refer to the first argumen
argument in the call statement.
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4. Now look at the input filter using the command:

more in_filt.c

The first portion of the file sets up various definitions and pr
used in the program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

void input_filter(FILE *input_file, FILE *param_file);

The program is controlled frommain() .  This routine perform
the number of arguments used to call the program, opensparams
andout.app for writing and calls the subroutine to perform
input_filt() .

void main(int argc,char *argv[])
 {

 FILE *input_file, *param_file;

 if (argc<2)
   {
   printf(ÒNeed an output filename, exiting\nÓ);
   exit(-1);
   }

 if ((input_file=fopen(argv[1],ÓrÓ)) == NULL)
   {
   printf(ÒCouldnÕt open file: %s   exiting.\nÓ,argv[1]);
   exit(-1);
   }

 param_file=fopen(argv[2],ÓwÓ);

 input_filter(input_file, param_file);
 exit(0);
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 }

The first line ofparams.in  specifies the number of design v
and a string (tag ).  The nextn_param  lines are the value of e
variables with an identification tag.  The last lines are the AS
each of the constraints.  The ASV can be ignored in this inp
function values will be returned.  The initialparams.in  file for
listed below:

                      2 variables 3 functions
                      2.0000000000e+00 x1
                      2.0000000000e+00 x2
                                     1 ASV_1
                                     1 ASV_2
                                     1 ASV_3

The last portion of the filein_filt.c  is the input filter subro
params.in  and writesout.app  using the format in the abo

void input_filter(FILE *input_file, FILE *param_file)
{
int i, n_param,n_g;
float dum_param;
char tag1[10],tag2[10];

fscanf(input_file,”%d %s %d %s”,&n_param,tag1,&n_g,tag2);

for (i=0;i<n_param;i++)
 {
 fscanf(input_file,”%f %s”,&dum_param,tag1);
 fprintf(param_file,”#{%s = %f}\n”,tag1,dum_param);
 }
}

The contents of the fileout.app  will look something like:
#{x1 = 2.000000}
#{x2 = 2.000000}

You will recognize this as input for APREPRO.
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5. The final file is the output filter (out_filt.c ).  Normally, it re

file to get the results of a GOMA run.  In this case, the fileout.ap
the EXODUS file to simplify the description of the filters.  As
the first lines set up definitions and prototypes for the remai

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#define NUM_PARAM 2
#define MAX_LINE 80

float cost_fun(FILE *exoid);

float *asv_read(FILE *input_file,int *n_param, int *n_g, int **asv);

void output_filter(int *asv, int n_param, float *params, int n_g, FILE
*output_file);

Themain() routine inout_filt.c once again controls the
in_filt.c .  First some error checking is performed to insu
of arguments are being passed.  Next the filesparams.in  and r
opened.  The remaining functions are the meat of the progr
next.

int main(int argc,char *argv[])
{

int *asv, n_param,i, n_g;
float *params;
FILE *input_file, *output_file;

if (argc<3)
{
 printf(“Need both input and output files specified, exiting \n”);
 exit(-1);
}

input_file=fopen(argv[1],”r”);
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output_file=fopen(argv[2],”w”);

params=asv_read(input_file,&n_param,&n_g,&asv);

output_filter(asv, n_param, params, n_g, output_file);

exit(0);
}

The subroutineasv_read()  reads theparams.in  file return
information and the values of the parameters.  This allows t
determine what DAKOTA is requesting and to allow the para
for the cost function and the constraint evaluation.  The arraasv
params[]  are alloced inasv_read() .  This is done here w
statement.

float *asv_read(FILE *input_file, int *n_param, int n_g, int **asv)
{
 int i;
 char junk1[MAX_LINE],junk2[MAX_LINE];
 float *params;

 fscanf(input_file,Ó%d %sÓ,n_param,junk1,n_g,junk2);
 *n_g = *n_g - 1;

 params= (float *)calloc(*n_param, sizeof(float));
 *avs=(int *)calloc(*n_g +1, sizeof(int));

 for (i=0;i<*n_param;i++) fscanf(input_file,Ó%f %s\nÓ,&params[i], junk);

 for (i=0;i<=*n_g;i++)
   {
   fscanf(input_file,Ó%d %s\nÓ,&(*asv)[i],junk1);
   }
 fclose(input_file);
 return(params);
}

The next subroutine is the actual output filter (out_filt.c ).  T
opens the EXODUS file (in this caseout.app ) and evaluates 
g[n_g]  and the cost function,J_cost .  In this example the c
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evaluated using the routinecost()  and the constraints are ju
parameters.  The remaining code preforms error checks on
the DAKOTA input specification is correct as far as the grad
can be provided by the output filter.  It also writes out the re
appropriate information.

void output_filter(int *asv, int n_param, float *params, int n_g, FILE
 *output_file)
{
 int i;
 float J_cost;
 float *g;
 FILE *exoid;

 g=(float *)calloc(n_g ,sizeof(float));

 exoid=fopen(Òout.appÓ,ÓrÓ);
/* determine cost function and constraints*/

 g[0] =  params[0]*params[0] - params[1]/2.;
 g[1] = params[1]*params[1] -0.5;

 J_cost =  cost_fun(exoid);

 /* write dakota output file */

 if (asv[0]>3)
   {
   printf(ÒHessian is not available, exiting\nÓ);
   exit(-1);
   }

 if (asv[0]>2)
   {
   printf(ÒGradient is not available, exiting\nÓ);
   exit(-1);
   }

 if (asv[0]==1 || asv[0]==3 ||asv[0]==5)
   {
   fprintf(output_file,Ó%g f\nÓ,J_cost);
   }

 for (i=1;i<=n_g;i++)
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   {
   if (asv[i]==1 || asv[i]==3 || asv[i]==5)
     fprintf(output_file,Ó%g c%d\nÓ,g[i-1], i);
   else
     {
     printf(ÒNumber of parameters is probably wrong:      exiting.\nÓ);
     exit(-1);
     }
   }

 free(g);
}

The final routine evaluates the cost function.  In this case, th
exceptionally simple. It just reads the file out.app and runs t
formula:

float cost_fun(FILE *exoid)
{
int i;
float x[NUM_PARAM], J_cost, a, b;
char cdum[2];

for (i=0;i<NUM_PARAM;i++)
 {
 fscanf(exoid,”#{%s = %f}\n”,cdum,&x[i]);
 printf(“ x[%d] = %g \n”,i,x[i]);
 }

a=(x[0]-1.);
b=(x[1]-1.);

J_cost = a*a*a*a + b*b*b*b;

return J_cost;
}

6. To compile a program with EXODUS subroutines in it, excu
to:

 cc -o in_filt in_filt.c -lexoIIv2c -lnetcdf -lnsl -lm

7. Now the optimization can be run.  To execute the optimizati
dakota -i tut.in
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Wait until the thing finishes and enjoy the results.

Dryer Design Example
This section presents an extension of the tutorial problem to an e
care about. The shell program changes trivially, the input filter d
only the cost function evaluation changes in the output filter.  Th
solved is the multilayer drying problem shown in Figure 2. The on
has two solvents and a substrate. The cost function is the concen
the end of the simulation, which for this case is 200 sec.  The de
temperature, which has a constraint of 370K to prevent boiling.

Dryer Design Tutorial:

1. There are a few differences in the input specification to DAK
is in dryer.in .  The first is the change in the name of the a

analysis_driver=        ‘dryer.sh’

The variable description also changes:

Solvent 1

Solvent 0

Substrate

T_inf T_init

Figure 2 Drying Problem setup
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variables,                                      \

 continuous_design = 1                              \
 cdv_initial_point       300.0 \
 cdv_upper_bounds     600.0  \
 cdv_lower_bounds       0.   \
 cdv_descriptor    ‘T_inf’

The final change is in the responses section. Here the numb
changed to reflect the current problem:

num_nonlinear_constraints = 1           \

2. The shell functiondryer.sh  is identical tocost.sh  describe
the GOMA evaluation.  To look at the file execute:

more dryer.sh

The file looks like
#! /bin/csh -f
#
#This shell file evaluates the cost function
#for a dakota run
#
in_filt $argv[1] dryer.app

goma -a -i ml_input -se stderr -so stdout

dryer $argv[1] $argv[2]>>& goma.src

3. The input filter is identical.  To check this execute:
more in_filt.c

Note that the output of the input filter is the filedryer.app  as 
the filedryer.sh , which contains the oven temperature.  T
GOMA input fileDefs.app .  Check this file now to see the i
the top of the file.

4. The simulation is identical to the templatedryer.ml  provided 
distribution.  If you are not familiar with it, become familiar w
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5. The major changes are in the output filter,dryer.c  for this pro

function evaluation will be discussed.  The remaining code i
above.  Any variables in all capital letters are defined in the 

The cost function requires interrogating the EXODUS file th
GOMA for the concentration of the solventY0 at a node near th
Open the filedryer.c  by executing:

emacs dryer.c

Move the cursor down to the portion of the code where the 
output_filter() is defined. After the definition of the ne
first line of code opens the EXODUS file using an EXODUS

/* page 25 of SAND92-2137 */
/* Open file */

 CPU_word_size=sizeof(float);
 IO_word_size=0;

 exoid=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&version

Note that the comments give the reference page in the EXO
which is available on-line athttp://sass577.endo.sandia.gov/
SEACAS/SEACAS.html

Theexoid  output is used to reference the file.  It is of typeint .
functioncost_fun()  is called with the argument beingexoid
variable definitions, the number of variables are determined
the array for the variable names is set up:

/* page 133 of SAND92-2137 */

error=ex_get_var_param(exoid,”n”,&num_nodal_var);

for (i=0;i<num_nodal_var;i++)
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 var_names[i] = (char *) calloc((MAX_STR_LNG+1),sizeof(char));

Next, the variable names are extracted and the index of the
is determined.  The variables are referenced in the databas
will be needed when extracting the concentration time histo

/* page 137 of SAND92-2137 */
error=ex_get_var_names(exoid,”n”,num_nodal_var,var_names);

/* find the velocity variables */

for (i=0;i<num_nodal_var;i++)
 {
 if (strcmp(CONC,var_names[i])==0)  CONC_var_index=i+1;
 }

Next, the number of time steps are determined and the arra
step values and the values of the concentration history at no
array times will contain the time axis.

/* page 41 of SAND92-2137 */
/* determine number of time steps and use the last one */
error=ex_inquire(exoid,EX_INQ_TIME,&num_time_steps,&fdum,cdum);

concentration = (float *) calloc(num_time_steps,sizeof(float));
times = (float *) calloc(num_time_steps,sizeof(float));

/* page 143 of SAND92-2137 */
error = ex_get_all_times(exoid,times);

Now the concentration history at node 8 is read and the last
concentration is used for the cost function

/* page 167 of SAND92-2137*/

error = ex_get_nodal_var_time(exoid, CONC_var_index,NODE,1,

num_time_steps,concentration);
printf(“ %g   %g \n”,concentration[0],concentration[num_time_steps-1]);
J_cost=concentration[num_time_steps-1];
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6. To compile a program with EXODUS subroutines in it, exec

to:
cc -o in_filt in_filt.c -lexoIIv2c -lnetcdf -lnsl -lm

7. To run the simulation, just type:
dakota -i dryer.in

8. Sit back and watch it run.

Dryer Parameter Study in Fortran:

This section will go through an example of a FORTRAN interface
GOMA.  The example will be a multi-dimensional parameter stud
function as the previous example, namely the concentration of th
at the end after 200 sec.  The two variables that will vary are the
T_inf , and the convection coefficient,Kh.

1. The input specification,dryer.in ,  for DAKOTA is as follows:
interface,

application system,
  input_filter =          ‘NO_FILTER’ \
  output_filter =         ‘NO_FILTER’ \
  analysis_driver=        ‘dryer.sh’ \
  parameters_file=        ‘params.in’\
  results_file=           ‘results.out’\
  analysis_usage =        ‘DEFAULT’

variables,
continuous_design = 2
  cdv_initial_point       300.0   -50 \
  cdv_upper_bounds        600.0   -50\
  cdv_lower_bounds        0.     0\
  cdv_descriptor    ‘T_inf’      ‘Kh’

responses,
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num_objective_functions = 1
num_linear_constraints = 0
num_nonlinear_constraints = 1
no_gradients
no_hessians

strategy,
single_method

method,                                         \
        multidim_parameter_study\

partitions = 10 10

The main difference between this file and the ones discusse
examples is thevariables  section and themethod  section.

The next file necessary is the shell filedryer.sh  which runs th
controls the cost function evaluation.  It is pretty simple and
both the previous examples:

#! /bin/csh -f
#
#This shell file evaluates the cost function
#for a dakota run
#
in_filt

goma -a -i ml_input -se stderr -so stdout

dryer

2. The input filter in FORTRAN is a little less general than the 
not easy to pass command line arguments in FORTRAN an
and written by the input filter have to be hard coded.  It is im
coded to be read in the input filter are identical to those use



DAK ion Example 398

E
Ap

S

D

P

not be used, nor
ts file.

described.  As with
 the generality of the
ate subroutines in the
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
specification.  This means thatfile_tag  andfile_save  can
can the default file names for the parameter file or the resul

       program in_filt
c
c      This is a poor man’s version of
c      the c program in_filt.c
c      LEARN C!!!
c

       integer i, nparam, nfun
       real dparam
       character*10 tag, junk

               open(22,file=’params.in’,status=’old’)
               open(33,file=’dryer.app’,status=’unknown’)

               read(22,*) nparam, tag, nfun, junk

               do 10 i=1, nparam
                 read(22,*) dparam,tag
                 write(33,’(1x,a2,a10,a1,f16.8,a1)’) "#{",tag,"=",dparam,"}"
          10   continue

               end

3. The function that evaluates the cost function,dryer.f , is now 
the input filter the filenames have to be hard coded, limiting
code.  The main program does little except call the appropri
appropriate order

       program dryer
       include ‘/usr/local/inc/exodusII.inc’
       character*12 infile, outfile
       integer asv(3), nparam, ng
       real params(2)

       infile = ‘params.in’
       outfile = ‘results.out’

       call asvrd(infile, nparam, ng, asv, params)

       call outfilt(asv, nparam, params, ng, outfile)
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       stop
       end

The first subroutine,asvrd() , reads the parameters file,param
determines the values of the parameters and the ASV

       subroutine asvrd(infile, nparam, ng, asv, params)
       character*12 infile
       character*50 junk, junk1
       integer i, nparam, ng, asv(3)
       real params(2)

       open(unit=22, file=infile, status=’old’)

       read(22,*) nparam, junk, ng, junk1
       ng=ng-1

       do 10 i=1,nparam
         read(22,*) params(i), junk
  10   continue

       do 20 i=1,ng+1
         read(22,*) asv(i), junk
         write(*,*) asv(i), junk
  20   continue

       close(22)
       end

The next subroutine,outfilt() , opens the EXODUS datab
writing of the file,results.out  for DAKOTA to read.  It doe
make sure that the function values and their gradients that D
through the ASV are, in fact, available

       subroutine outfilt(asv, nparam, params, ng, outfile)
       include ‘/usr/local/inc/exodusII.inc’
       integer asv(3), i, nparam, ng
       real params(2)
       character*12 outfile
       real J_cost, g(2)

       integer cpu_ws, exopen, exread, io_ws, idexo, ierr
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       real vers

       cpu_ws=0
       io_ws=0

c page 25 of SAND92-2137

       idexo = EXOPEN ("out.exoII", EXREAD, cpu_ws, io_ws, vers, ierr)

       g(1) = params(1) - 370.0

       J_cost = costf(idexo)

       open(unit=33, file=outfile, status=’unknown’)

       if (asv(1) .gt. 3) then
         write(*,*) ‘Hessian is not available, exiting ‘
         call exit(0)
       endif

       if (asv(1) .gt. 2) then
         write(*,*) ‘Gradient is not available, exiting ‘
         call exit(0)
       endif

       if (asv(1) .eq. 1 .or. asv(1) .eq. 3 .or. asv(1) .eq. 5 ) then
         write(33,*) J_cost, ‘ f’
       endif

       do 30 i=1,ng

         if (asv(i) .gt. 3) then
           write(*,*) ‘Hessian is not available, exiting ‘
           call exit(0)
         endif

         if (asv(i) .gt. 2) then
           write(*,*) ‘Gradient is not available, exiting ‘
           call exit(0)
         endif

         if (asv(i) .eq. 1 .or. asv(i) .eq. 3 .or. asv(i) .eq. 5 ) then
           write(33,*) g(i), ‘ g1’
           write(*,*) g(i)
         endif

 30    continue
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       end

The last function,costf() , calculates determines what the v
the substrate is at the end of the simulation (200 sec).  It us
EXODUS subroutine library and page numbers in the EXOD
give to facilitate reading the code.  The variable exoid is use
EXODUS database file that the GOMA results will be read f

       real function costf(idexo)
       include ‘/usr/local/inc/exodusII.inc’
       integer cvarind, extims, i, idexo, ntime, nvar, ierr

       real redum, time
       real time(500), concen(500)
       character*(MXSTLN) vname(20)
       character cdum

First, we need to know how many variables are in the datab
c page 133 SAND92-2137

       call EXGVP(idexo, "n", nvar, ierr)

c page 137 SAND92-2137

Next, we read the variable’s names in and determine which o
In this case we are interested inY0.

       do 40 i=1,nvar
         if (vname(i) .eq. "Y0") then
           cvarind = i
         endif
  40   continue

Now we find out how many time steps are in the database
c page 41 of SAND92-2137
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       call EXINQ(idexo, EXTIMS, ntime, redum, cdum, ierr)
c page 144 of SAND92-2137

       call EXGATM(idexo, time, ierr)

Finally we read in all the values ofY0 through time and take th
the file

c page 167 of SAND92-2137

       call EXGNVT(idexo, cvarind, 8, 1, ntime, concen, ierr)

       costf=concen(ntime)

c page 27 of SAND92-2137

       call EXCLOS(idexo,ierr)
       return
       end

4. To compile a FORTRAN program with EXODUS commands
command similar to:

f77 -o dryer dryer.f -lexoIIv2for -lexoIIv2c -lnetcdf -lnsl

5. To run the simulation, just type
dakota -i dryer.in

6. Sit back and watch it run.

Slot Coater Example

The slot coater example utilizes the failure capture option in DAK
ways to insure a solution throughout the optimization:  The first i
schedule very conservatively and the other is to rely on continua
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continuation, the optimization runs significantly faster.  In this op
relaxation used.

The parameterization used for this example is shown in Figure 3
angle a were used in the optimization.  The parameters used for
optimization were taken from

Sator (1990),Slot Coating, PhD. Thesis University of Minnesota, A
Microfilms, Ann Arbor, Michigan.

The cost function used for this optimization is

1
2 3

4

5 6

Gap

h1 h2 h3

α L1
L2

S1

S2

7 8 9 10

L3

11 12

13 14

15

16
1718

Figure 3 Slot coat parameterization
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The design variable, as it is currently set up, is the gap length an
function was choosen to minimize the sensitivity of the movemen
line to changes in the webspeed or the back pressure.

Slot Coater Tutorial:

1. As with all the examples before, the first file necessary is th
specification.  This example is identical to all the optimizatio
except for the specification of the design variables and the a
capture command in the interface specification.   The file is 
changed portions of the specification for this problem is

interface,                                              \
 application system,                                     \
 input_filter =          ‘NO_FILTER’           \
 output_filter =         ‘NO_FILTER’           \
 analysis_driver=        ‘slot.sh’             \
 parameters_file=        ‘params.in’   \
 results_file=           ‘results.out’ \
 analysis_usage =        ‘DEFAULT’     \
 failure_capture continuation

######
variables,                                      \
 continuous_design = 2                           \
 cdv_initial_point           0.05  0.0\
 cdv_upper_bounds           0.07     0.2\
 cdv_lower_bounds          0.035     -0.2\
 cdv_descriptor      ‘Gap_new’  ‘alpha_new’

J
28.5
0.02
---------- 

 
uweb∂

∂
x dcl( )

2850
0.01
------------ 

 
Pvac∂

∂
x dcl( )+=

0.35 Gap<0.7<
0.2 α 0.2< <–
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2. The C-shell file,slot.sh ,  should look pretty familiar also

#! /bin/csh -f
#
#  This shell file evaluates the cost function
#    for a dakota run
#
in_filt $argv[1] slot.app

goma -a -i slot_input -se stderr -so stdout

slot $argv[1] $argv[2]

3. The input filterin_filt.c is identical to all the previous inp

4. The major difference is in the cost function,slot.c .  The subr
andasv_read()  are the same.  However, the routineoutput_fi
been changed to incorporate a failure capturing scheme.  T
GOMA four global variables that indicate the convergence s
simulation.  They are:

• CONVBoolean convergence (1=> converged, 0=> not converg

• NEWT_ITNumber of Newton Iterations specified in the GOMA

• MAX_ITNumber of Newton Iterations taken by the simulation

• CONVRATEThe log10 relative convergence rate at the second
iteration taken

The subroutine converge inslot.c  takes care of reading thes
subroutineout_filt  look like

void output_filter(int *asv, int n_param, double *params, int n_g,
   FILE *output_file)

{
 char filename[]=GOMA_FILE;
 int CPU_word_size, IO_word_size;
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 float version;
 int exoid, i;
 double J_cost;
 double *g;
 int newt_it, max_it,error;
 double convrate;

 g=(double *)calloc(n_g ,sizeof(double));

/* page 25 of SAND92-2137 */
/* Open file */

 CPU_word_size=sizeof(double);
 IO_word_size=0;

This section of the code is the most different.  Note how the
opened, then the convergence is checked. If the simulation
is flagged and the program exits.  If the simulation didn’t con
newton iterations, then the program exits  and a “1” is return
can rerun GOMA (not yet implemented).  If it has converged
results.out file as before.

 exoid=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&version

 error = converge(exoid, &max_it, &newt_it, &convrate);

 if (!error) {
   /* determine cost function and constraints*/

   system("cp soln.dat contin.dat");

   g[0] = - 0.5e-4;
   J_cost =  cost_fun(exoid);

   J_cost=J_cost*J_cost;

   printf("J= %g\n",J_cost);

   /* write dakota output file */

   if (asv[0]>3) {
     printf("Hessian is not available, exiting\n");
     exit(-1);
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     }

   if (asv[0]>2) {
     printf("Gradient is not available, exiting\n");
     exit(-1);
     }

   if (asv[0]==1 || asv[0]==3 ||asv[0]==5)  fprintf(output_file,
"%g f\n",J_cost);

   for (i=1;i<=n_g;i++) {
     if (asv[i]==1 || asv[i]==3 || asv[i]==5) {
       fprintf(output_file,"%g c%d\n",g[i-1],i);
       }
 else {
       printf("Number of parameters is probably wrong:      exiting.\n");
       exit(1);
       }
     }
   return;
   }
 if (newt_it == max_it && convrate > 0.0) {
   printf("Not converged!! \n");
   exit(1);
   }
 else {
   fprintf(output_file,"FAIL\n");
   }

 free(g);
}

5. Theconverge()  routine is fairly basic.  It reads the global 
EXODUS database, then sends them back.

int converge(int exoid, int *max_it, int *newt_it, double *convrate)
{
  int i, inewt, iconv, imax, irate;
  int ret_int, ntime, nvar, conv;
  int error;
  char *cdum=0, *gvar_name[NUM_G_VAR];
  float fdum;
  double gvar[NUM_G_VAR];

  error=ex_inquire(exoid, EX_INQ_TIME, &ntime, &fdum, cdum);
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  error=ex_get_var_param(exoid, "g", &nvar);

  for (i=0; i<nvar;i++) gvar_name[i]= (char *) calloc((MAX_LINE+1),
    sizeof(char));

  error=ex_get_var_names(exoid, "g",nvar, gvar_name);

  for (i=0;i<nvar;i++) {
    if (strcmp(CON_VAR,gvar_name[i])==0) iconv=i;
    if (strcmp(NEWT_VAR,gvar_name[i])==0) inewt=i;
    if (strcmp(MAX_VAR,gvar_name[i])==0)  imax=i;
    if (strcmp(RATE_VAR,gvar_name[i])==0) irate=i;

    }

  /* Page 159 SAND92-2137 */
  error=ex_get_glob_vars(exoid, ntime, nvar, gvar);

  if (error == 0) {
    *newt_it=(int) gvar[inewt];
    *max_it=(int) gvar[imax];
    *convrate= gvar[irate];
    conv=(int) gvar[iconv];
    }
  else {
    *newt_it= -1;
    *max_it= -1;
    *convrate= -999999.0;
    conv=0;
    }
  return !conv;
}

The cost function evaluation subroutine,cost_fun() , is more
Actually it isn’t that difficult, it just looks that way.  Basically 
webspeed.app  andvacuum.app  which are read bycost_fun
nominal position of the dynamic contact point is read.  Proc
then perturbs the values inwebspeed.app  and calls GOMA, 
perturbed value of the dynamic contact point. This is repeate
The perturbed values are then used for a finite difference ca
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double cost_fun(int exoid_nom)
{
 int i, CPU_word_size, IO_word_size;
 int error, exoid_delta ,idum;
 int ns_num_nodes, *ns_node_list;
 double fdum, J1, J2;
 float version;
 double webspeed_nom,webspeed_delt;
 double Pvacuum_nom,Pvacuum_delt, g1,g2;
 double *ns_X,*ns_Y,*ns_Z,*ns_displx_nom, *ns_displx_delt;
 char filename[]=GOMA_FILE,cdum[9];
 FILE *in_file;

 error=ex_get_node_set_param(exoid_nom, NSET, &ns_num_nodes,&idum);
 ns_node_list=(int *) calloc(ns_num_nodes,sizeof(int));

 error=ex_get_node_set(exoid_nom,NSET, ns_node_list);

 ns_X=(double *) calloc(ns_num_nodes,sizeof(double));
 ns_Y=(double *) calloc(ns_num_nodes,sizeof(double));
 ns_Z=(double *) calloc(ns_num_nodes,sizeof(double));
 ns_displx_nom=(double *) calloc(ns_num_nodes,sizeof(double));
 ns_displx_delt=(double *) calloc(ns_num_nodes,sizeof(double));

 get_displ(exoid_nom,NSET,ns_num_nodes,ns_node_list, ns_X, ns_Y, ns_Z,
    ns_displx_nom);

 /******************/
 in_file=fopen(WEBFILE,”r”);
 fscanf(in_file,”${%s = %lf}”,cdum,&webspeed_nom);

 fclose(in_file);

 webspeed_delt=(1.0+FDEPS)*webspeed_nom;
 in_file=fopen(WEBFILE,”w”);
 fprintf(in_file,”${webspeed = %f}\n”,webspeed_delt);
 fclose(in_file);

 system(“/home/prschun/.sun5/bin/goma -a -i slot_input -se
 stderr -so stdout”);
 /*system(“/home/prschun/.sun5/bin/goma -a -i slot_input”);*/
 in_file=fopen(WEBFILE,”w”);
 fprintf(in_file,”${webspeed = %f}\n”,webspeed_nom);
 fclose(in_file);

 CPU_word_size=sizeof(double);
 IO_word_size=0;
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 exoid_delta=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&v

 get_displ(exoid_delta,NSET,ns_num_nodes,ns_node_list, ns_X, ns_Y, ns_Z,
    ns_displx_delt);
 /***************/
 g1= webspeed_nom/Ls;g1=1.0e3;
 J1= (ns_displx_delt[0] - ns_displx_nom[0])/(webspeed_delt-webspeed_nom);
 /******************/
 in_file=fopen(PRESSFILE,”r”);
 fscanf(in_file,”${%s = %lf}”,cdum,&Pvacuum_nom);
 fclose(in_file);
 Pvacuum_delt=(1.0+FDEPS)*Pvacuum_nom;
 in_file=fopen(PRESSFILE,”w”);
 fprintf(in_file,”${vacuum = %f}\n”,Pvacuum_delt);

 fclose(in_file);
 system(“/home/prschun/.sun5/bin/goma -a -i slot_input -se stderr -so
 stdout”);
 /*system(“/home/prschun/.sun5/bin/goma -a -i slot_input”);*/
 in_file=fopen(PRESSFILE,”w”);
 fprintf(in_file,”${vacuum = %f}\n”,Pvacuum_nom);
 fclose(in_file);

 CPU_word_size=sizeof(double);
 IO_word_size=0;

 exoid_delta=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&v

 get_displ(exoid_delta,NSET,ns_num_nodes,ns_node_list, ns_X, ns_Y, ns_Z,
    ns_displx_delt);

 /***************/
 g2=abs(Pvacuum_nom/Ls);g2=1.0e7;
 J2= (ns_displx_delt[0] - ns_displx_nom[0])/(Pvacuum_delt - Pvacuum_nom);
 /*printf(“J1 = %e , J2 = %e \n”,J1,J2);*/
 return ALPHA*J1 + BETA*J2;
}

6. Now compile the code and run DAKOTA.
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Appendix

This appendix will briefly describe the process of using DAKOTA
driver such as FIDAP. The procedure is basically identical to whe
analysis.

1. Set up optimization by writing a DAKOTA input file. (See pa

2. Write an input filter to take the file params.in generated by D
parameter file is on page 8) and write and output file that ca
analysis code.  An easy way to do this is to use APREPRO.
used, the input filter in_filt.c can be written generally enough
for all optimizations. (see pages 11-13)

3. Now parameterize your model so that the design variables 
be easily changed by APREPRO.  Make sure the output fro
information you will need to evaluate your cost function.

in_filt.c out_filt.cMesh/Analysis

DAKOTAparams.in results.out

cost.sh

Figure A. DAKOTA interface scheme
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4. Write a program (out_filt.c) that takes the output from your c

function, and writes a file (results.out) that (i) has the inform
DAKOTA (this is specified in params.in) and (ii) is in a forma
read. (see pages 13 - 16)

5. In this tutorial, the programs that result from steps 2-4 are d
cost.sh.   DAKOTA, therefore, only has to call the shell prog
function.

Copy to:
MS0826 9111       Dayfile
MS 0826 9111       W. L. Hermina
MS 0826 9111       P. R. Schunk
MS0826 9111       R. R. Rao
MS0826 9111 P. A. Sackinger
MS 0834 9112 T. A. Baer
MS 0826 9111 D. A. Labreche
MS 0557 9741 T. W. Simmermacher

Dr. Richard A. Cairncross
Drexel University
Department of Chemical Engineering
Philadelphia, PA  19104

Dr. Ian Gates
University of Minnesota
Department of Chemical Engineering and Materials Science
421 Washington Ave. SE
Minneapolis, MN 55455
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Additional References

Refer to

• [Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutch
Salinger, A.G., 1996]

• [Eldred, M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., R
Ponslet, E.R., and Chen, K.S., 1996]

for procedures and lessons learned in interfacing with complex e
codes. Key findings in complex engineering applications are also
M.S., 1998].
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